Skip to main content

Advertisement

Log in

Characterizing graphite-based pencil material for mechanical energy harvesting and sensing application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Several techniques had been employed to improve the electrical power of triboelectric nanogenerator since the invention of the device. These techniques include physical structure modification and insertion of nanoparticles in polymer matrix. Herein, we are introducing graphite-based pencil material in polydimethylsiloxane (PDMS) matrix to fabricate a highly flexible composite film at an instant and economical base. The material choice was made on the presence of clay composed with Al and Si with abundance of graphite in pencil. After material synthesis, well-grinded pencil material (PM) was taken for composite film synthesis. Fabricating 175-μm-thick film by embedding 2 wt.% of PM in PDMS matrix, open-circuit voltage, short-circuit current of 87 V, 13 μA were measured, respectively. Furthermore, changing the top tribomaterial from aluminum to nylon, electrical output of the device was improved up to 53% open-circuit voltage and 31% short-circuit current. The obtained results of PM/PDMS membrane were compared with graphite/PDMS composite film. Furthermore, the composite membrane was employed for temperature-sensing application. The output of the membrane at different temperatures confirmed the robustness of the film for the cost-effective fabrication of a temperature-sensing device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data can be available at reasonable request.

References

  1. W. Yang, J. Chen, G. Zhu, X. Wen, P. Bai, Y. Su, Y. Lin, Z.L. Wang, Nano Res. 6, 880–886 (2013)

    Article  CAS  Google Scholar 

  2. P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Proc. IEEE 96, 1457–1486 (2008)

    Article  Google Scholar 

  3. M. Seol, J. Woo, S. Jeon, D. Kim, S. Park, J. Hur, Y. Choi, Nano Energy 14, 201–208 (2015)

    Article  CAS  Google Scholar 

  4. H. Shi, Z. Liu, Z. Mei, Energies 13, 1–22 (2020)

    Google Scholar 

  5. Y. Lu, X. Wang, X. Wu, J. Qin, R. Lu, J. Microcmech. Microeng. 24, 065010 (2014)

    Article  CAS  Google Scholar 

  6. M. Hamlehdar, A. Kasaeian, M.R. Safaei, Renew. Energy 143, 1826–1838 (2019)

    Article  Google Scholar 

  7. J.Y. Park, M. Salauddin, M.S. Rasel, J. Microcmech. Microeng. 29, 1–31 (2019)

    Google Scholar 

  8. X. Guo, L. Liu, Z. Zhang, S. Gao, T. He, Q. Shi, C. Lee, J. Microcmech. Microeng. 31, 093002 (2021)

    Article  CAS  Google Scholar 

  9. M. Sahu, S. Hajra, K. Lee, P.L. Deepti, K. Mistewicz, H.J. Kim, Crystals 11, 1–10 (2021)

    Article  Google Scholar 

  10. S.P. Beeby, R.N. Torah, M.J. Tudor, P. Glynne-Jones, T. O’Donnell, C.R. Saha, S. Roy, J. Microcmech. Microeng. 17, 1257–1265 (2007)

    Article  Google Scholar 

  11. Y. Yang, S. Wang, Y. Zhang, Z.L. Wang, Nano Lett. 12, 6408–6413 (2012)

    Article  CAS  Google Scholar 

  12. J. Han, H. Li, T. Fu, J. Microcmech. Microeng. 31, 015007 (2021)

    Article  Google Scholar 

  13. Z. Bai, T. He, Z. Zhang, Y. Xu, Z. Zhang, Q. Shi, Y. Yang, B. Zhou, M. Zhu, J. Guo, C. Lee, Nano Energy 94, 106956 (2022)

    Article  CAS  Google Scholar 

  14. X. Guo, T. He, Z. Zhang, A. Luo, F. Wang, E.J. Ng, Y. Zhu, H. Liu, C. Lee, ACS Nano 15, 19054–19069 (2021)

    Article  CAS  Google Scholar 

  15. F. Wen, Z. Zhang, T. He, C. Lee, Nature Commun. 12, 5378 (2021)

    Article  CAS  Google Scholar 

  16. M. Zhu, Z. Sun, T. Chen, C. Lee, Nature Commun. 12, 2692 (2021)

    Article  CAS  Google Scholar 

  17. V. Vivekananthan, W.J. Kim, N.R. Alluri, Y. Purusothaman, K.S. Abisegapriyan, S.J. Kim, Micro Nano Syst. Lett. 7, 1–8 (2019)

    Article  Google Scholar 

  18. H. Zhang, K. Xia, J. Fu, Smart Mater. Struct. 28, 085036 (2019)

    Article  CAS  Google Scholar 

  19. X. Wang, J. Liang, Y. Xiano, Y. Wu, Y. Deng, X. Wang, M. Zhang, IOP Conf. Series: J. Phys.: Conf. Ser. 986, 012009 (2018)

    Article  Google Scholar 

  20. S. Sriphan, T. Charoonsuk, T. Maluangnont, N. Vittayakorn, A.C.S. Appl, Energy Mater. 2(5), 3840–3850 (2019)

    CAS  Google Scholar 

  21. X. Zhang, S. Lv, X. Lu, H. Yu, T. Huang, Q. Zhang, M. Zhu, Nano Energy 75, 104894 (2020)

    Article  CAS  Google Scholar 

  22. B. Wang, J. Zhong, Q. Zhong, N. Wu, X. Cheng, W. Li, K. Liu, L. Huang, B. Hu, J. Zhou, Adv. Electron. Mater. 2(4), 1500408 (2016)

    Article  Google Scholar 

  23. Z. Fang, K.H. Chan, X. Lu, C.F. Tan, G.W. Ho, J. Mater. Chem. A 6, 52–57 (2018)

    Article  CAS  Google Scholar 

  24. M. Wang, N. Zhang, Y. Tang, H. Zhang, C. Ning, L. Tian, W. Li, J. Zhang, Y. Mao, E. Liang, J. Mater. Chem. A 5, 12252–12257 (2017)

    Article  CAS  Google Scholar 

  25. M. Wu, Z. Gao, K. Yao, S. Hou, Y. Liu, D. Li, J. He, X. Huang, E. Song, J. Yu, X. Yu, Materials Today Energy 20, 100657 (2021)

    Article  CAS  Google Scholar 

  26. X. Zhao, B. Chen, G. Wei, J.M. Wu, W. Han, Y. Yang, Adv. Mater. Technol. 4(5), 1800723 (2019)

    Article  Google Scholar 

  27. Z. Zhang, Y. Chen, D.K. Debeli, J.S. Guo, A.C.S. Appl, Mater. Interfaces 10, 13082–13091 (2018)

    Article  CAS  Google Scholar 

  28. T. Li, Y. Xu, M. Willander, F. Xing, X. Cao, N. Wang, Z.L. Wang, Adv. Funct. Mater. 26, 4370–4376 (2016)

    Article  CAS  Google Scholar 

  29. G. Dastgeer, A.M. Afzal, S.H.A. Jaffery, M. Imran, M.A. Assiri, S. Nasir, J. Alloys Compd. 919, 165815 (2022)

    Article  CAS  Google Scholar 

  30. M. Kolahdouz, B. Xu, A.F. Nasiri, M. Fathollahzadeh, M. Manian, H. Aghababa, Y. Wu, H.H. Radamson, Micromachines 13, 1257 (2022)

    Article  Google Scholar 

  31. Annu, S. Sharma, R. Jain, A.N. Raja, J. Electrochem. Soc. 167, 037501 (2020)

    Article  CAS  Google Scholar 

  32. J.H. Choi, Y. Ra, S. Cho, M. La, S.J. Park, D. Choi, Compos. Sci. Technol. 207, 1–9 (2021)

    Article  Google Scholar 

  33. X. Cui, Y. Zhang, Nano Select 1, 461–470 (2020)

    Article  Google Scholar 

  34. W. Ko, C. Tseng, W. Wu, C. Lee, E-Polymers (2010). https://doi.org/10.1515/epoly.2010.10.1.326

    Article  Google Scholar 

  35. Y. Yu, Z. Li, Y. Wang, S. Gong, X. Wang, Adv. Mater. 27, 4938–4944 (2015)

    Article  CAS  Google Scholar 

  36. J.M. Wu, C.K. Chang, Y.T. Chang, Nano Energy 19, 39–47 (2015)

    Article  CAS  Google Scholar 

  37. D.J. DiMaria, J. Appl. Phys. 45, 5454–5456 (1974)

    Article  CAS  Google Scholar 

  38. S.H. Shin, D. Park, J.Y. Jung, P. Park, J. Nah, Nanoscale 10, 20995–21000 (2018)

    Article  CAS  Google Scholar 

  39. B. Cheng, Q. Xu, Y. Ding, S. Bai, X. Jai, Y. Yu, J. Wen, Y. Qin, Nat. Commun. 12, 1–8 (2021)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1A2C2007804) and the Korea Basic Science Institute (KBSI) National Research Facilities & Equipment Center (NFEC) grant funded by the Korea government (Ministry of Education) (No. 2019R1A6C1010031).

Author information

Authors and Affiliations

Authors

Contributions

Initial experiments were conducted by the first author. AN gave figures setup and sequence was made by NS. Editing, corrections and improvement in the complete manuscript were made by the corresponding author.

Corresponding author

Correspondence to Dae Ho Yoon.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, A., Choi, H.W., Sarwar, N. et al. Characterizing graphite-based pencil material for mechanical energy harvesting and sensing application. J Mater Sci: Mater Electron 34, 222 (2023). https://doi.org/10.1007/s10854-022-09640-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09640-5

Navigation