Skip to main content
Log in

KSrVO4:Tb3+−A potential green-emitting nanophosphor candidate for white LEDs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work reports the preparation of KSr(1 − 3x/2)VO4:xTb3+ powders (x = 0 to 5.0 mol%) via low-cost combustion route. The XRD study affirms the phase purity of the phosphors and established the nano-size of the powdered grains which is also supported by Transmission Electron Microscopy (TEM) studies. The UV–Vis spectroscopy reveals that the title phosphor has appreciable absorption efficiency in the UV excitation range from 190 to 400 nm. The optical band gap and Urbach energy, respectively, were estimated to be 3.62 eV and 100.6 meV. The photoluminescence (PL) spectra shows that under 311 nm UV excitation corresponding to 4f8-4f75d transition of Tb3+, this phosphor exhibited the characteristic green emission with enhanced intensity which was ascribed to electric dipole transition 5D4 → 7F5 of Tb3+ ion. The CIE chromaticity coordinates were used to find dominant wavelength, excitation purity and color correlated temperature (CCT) of the phosphor. The nanophosphor has potential to be explored as the green-emitting candidate for white light LEDs for reflected light illumination applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Usman, M. Munsif, U. Mushtaq, A.R. Anwa, N. Muhammad, Crit. Rev. Solid State Mater. Sci. 46(5), 450 (2021)

    Article  CAS  Google Scholar 

  2. X. Feng, W. Xu, Q. Han, S. Zhang, Opt. Express. 24(1), 573 (2016)

    Article  CAS  Google Scholar 

  3. R.J. Hyun, P.D. Yoder, L. Jianping, Z. Lochner, K. Hyunsoo, C. Suk, J.K. Hee, R.D. Dupuis, IEEE J. Sel. Top. Quant. 15, 1080 (2009)

    Article  Google Scholar 

  4. M.H. Crawford, IEEE J. Sel. Top. Quant. 15, 1028 (2009)

    Article  CAS  Google Scholar 

  5. Z. Jun, Z.X. Jing, L.D. Wei, Y. Lei, L. Kai, Z.Y. Wen, D.J. Sheng, W.X. Fu, L.S. Ti, I.E.E.E. Photonic, Tech. L 27, 117 (2015)

    Article  Google Scholar 

  6. Q. Zhou, M. Xu, H. Wang, Opto-Electron. Rev. 24(1), 1 (2016)

    Article  CAS  Google Scholar 

  7. C. Guo, S. Wang, T. Chen, L. Luan, Y. Xu, Appl. Phys. A 94, 365 (2009)

    Article  CAS  Google Scholar 

  8. J.K. Park, C.H. Kim, S.H. Park, H.D. Park, S.Y. Choi, Appl. Phys. Lett. 84, 1647 (2004)

    Article  CAS  Google Scholar 

  9. N.S. Satpute, S.J. Dhoble in Energy Materials: Fundamentals to Applications, ed. By S.J. Dhoble, N.T. Kalyani, B. Vengadaesvaran, A.K. Arof (Elsevier, Netherlands, 2021) p. 407

    Google Scholar 

  10. Y. Zhuo, S. Hariyani, J. Zhong, J. Brgoch, Chem. Mater. 33(9), 3304 (2021)

    Article  CAS  Google Scholar 

  11. H. Chen, Y. Wang, Inorg. Chem. 58(11), 7440 (2019)

    Article  CAS  Google Scholar 

  12. D. Jia, Chem. Eng. Comm. 194, 1666 (2007)

    Article  CAS  Google Scholar 

  13. X.Y. Chen, H.Z. Zhuang, G.K. Liu, S. Li, R.S. Niedbala, J. Appl. Phys. 94, 5559 (2003)

    Article  CAS  Google Scholar 

  14. B.V. Slobodin, L.L. Surat, R.F. Samigullina, A.V. Ishchenko, A.N. Cherepanov, B.V. Shul’gin, Inorg. Mater. 45, 428 (2009)

    Article  CAS  Google Scholar 

  15. P. Biswas, V. Kumar, O.M. Ntwaeaborwa, H.C. Swart, A.I.P. Conf, Proc. 1728, 020552 (2016)

    Google Scholar 

  16. N.I. Kordyukov, B.V. Shul’gin, F.F. Gavrilov, A.A. Fotiev, V.Y. Kara-Ushanov, Russ. Phys. J. 16(3), 359 (1973)

    Google Scholar 

  17. C.P. Reddy, V. Naresh, R. Ramaraghavulu, B.H. Rudramadevi, K.T.R. Reddy, S. Buddhudu, Spectrochim. Acta A Mol. Biomol. Spectrosc. 144, 68 (2015)

    Article  Google Scholar 

  18. E. Wu, Appl. Cryst. 22, 506 (1989)

    Article  CAS  Google Scholar 

  19. P. Biswas, V. Kumar, O.M. Ntwaeaborwa, H.C. Swart, Mater. Res. Express 2(2), 025010 (2015)

    Article  CAS  Google Scholar 

  20. A.M. Pires, M.R. Davolos, Chem. Mater. 13, 21 (2001)

    Article  CAS  Google Scholar 

  21. P. Biswas, V. Kumar, Kamni, Mater. Today: Proc. 28, 1018 (2020)

    CAS  Google Scholar 

  22. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9(7), 671 (2012)

    Article  CAS  Google Scholar 

  23. A.E. Morales, E.S. Mora, U. Pal, Rev. Mex. Fis. S 53, 18 (2007)

    CAS  Google Scholar 

  24. E.A. Davis, N.F. Mott, Phil. Mag. 22, 903 (1970)

    Article  CAS  Google Scholar 

  25. M. Grundmann, The Physics of Semiconductors (Springer, NewYork, 2006), pp.332–334

    Google Scholar 

  26. F.N.C. Anyaegbunam, C. Augustine, Dig. J. Nanomater. Biostruct. 13(3), 847 (2018)

    Google Scholar 

  27. P. Norouzzadeh, Kh. Mabhouti, M.M. Golzan, R. Naderali, Optik-Int. J. Light Electron Opt. 204, 164227 (2020)

    Article  CAS  Google Scholar 

  28. H. Kwak, S. Kim, H. Yoon, S. Park, H. Choi, Electroceram 23, 397 (2009)

    Article  CAS  Google Scholar 

  29. S. Zhou, Z. Fu, J. Zhang, S. Zhang, J. Lumin. 118, 179 (2006)

    Article  CAS  Google Scholar 

  30. G. Blasse, A. Bril, Philips Res. Rep. 22, 481 (1967)

    CAS  Google Scholar 

  31. H. Hirayama, T. Kyono, K. Akita, T. Nakamura, K. Ishibashi, Electr. Eng. Jpn. 157, 225 (2006)

    Article  Google Scholar 

  32. T. Hoshina, Jpn. J. Appl. Phys. 6, 1203 (1967)

    Article  CAS  Google Scholar 

  33. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994), pp.95–102

    Book  Google Scholar 

  34. G. Blasse, Phys. Lett. A 28, 444 (1968)

    Article  CAS  Google Scholar 

  35. M. Li, L. Wang, W. Ran, Z. Deng, J. Shi, C. Ren, Materials 10, 227 (2017)

    Article  Google Scholar 

  36. D.L. Dexter, J. Chem. Phys. 21, 836 (1953)

    Article  CAS  Google Scholar 

  37. J.M.P.J. Verstegen, J.L. Sommerdijk, J.G. Verriet, J. Lumin. 6, 425 (1973)

    Article  CAS  Google Scholar 

  38. Y. Pan, Q. Su, H. Xu, T. Chen, W. Ge, C. Yang, M. Wu, J. Solid State Chem. 174, 69 (2003)

    Article  CAS  Google Scholar 

  39. F. Wang, H. Song, G. Pan, L. Fan, B. Dong, L. Liu, X. Bai, R. Qin, X. Ren, Z. Zheng, S. Lu, J. Lumin. 128, 2013 (2008)

    Article  CAS  Google Scholar 

  40. C.H. Park, S.J. Park, B.Y. Yu, H.S. Bae, C.H. Kim, C.H. Pyun, J. Mater. Sci. Lett. 19, 335 (2000)

    Article  CAS  Google Scholar 

  41. W. Li, R.J. Xie, T. Zhou, L. Liuc, Y. Zhu, Dalton Trans. 43, 6132 (2014)

    Article  CAS  Google Scholar 

  42. V.B. Bhatkar, S.K. Omanwar, S.V. Moharil, Phys. Stat. Sol. 191(1), 272 (2002)

    Article  CAS  Google Scholar 

  43. D. Malacara, Color Vision and Colorimetry: Theory and Applications (SPIE Press, Bellingham, 2002), pp.82–90

    Google Scholar 

  44. C.S. McCamy, Color Res. Appl. 17, 142 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Sophisticated Analytical Instrumentation Facility (SAIF), Panjab University, Chandigarh for its valuable support and quick service in collecting data from powder XRD and HRTEM facility at subsidised charges.

Author information

Authors and Affiliations

Authors

Contributions

PB Data collection, Methodology, Software, Formal analysis, Validation, Writing—original draft. VK Conceptualization, Investigation, Validation, Writing—review and editing. K Writing—review and editing, Visualization.

Corresponding author

Correspondence to Pankaj Biswas.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial or non-financial interests or personal relationships that could have appeared to influence the work reported in the present paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, P., Kumar, V. & Kamni KSrVO4:Tb3+−A potential green-emitting nanophosphor candidate for white LEDs. J Mater Sci: Mater Electron 34, 149 (2023). https://doi.org/10.1007/s10854-022-09633-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09633-4

Navigation