Skip to main content
Log in

Influence of Sn doping on the structure, optical, and electrical properties of p-type cuprous iodide thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of the tin (Sn) doping on the characteristics of p-type cuprous iodide (CuI) thin films prepared using successive ionic layer adsorption and reaction (SILAR) have been examined in detail. The doping concentration of the Sn subjected to change from 0 to weight 8%. X-ray diffraction (XRD) consequences established the γ-phase cubic structure along the preferred development orientation analogous to (111) XRD plane. The Williamson and Hall (W-H) analysis has been used to calculated influence of crystallite size and micro-strain on the peak expansion of doping with different doping levels. The field-emission scanning electron microscope (FESEM) revealed the surface morphological and the grain size variation declined by means of doping concentration and agglomerated at large doping percentage. The estimated energy bandgap for the of pure and doped thin films changes as of 2.42 to 2.65 eV with Sn doping concentration. The photoluminescence (PL) results the of pure and doped CuI thin films presented a strong, room-temperature PL at the energy about their optical bandgaps and the peak intensity reduced with growing the doping level. The Sn doping improves the electrical conductivity with charge mobility and in addition to carrier concentration in CuI thin films as inveterate by Hall analysis. It can be proposed that the obtained results of CuI thin films with Sn doping are appropriate for hole transport layer of perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data used to support the findings of this study are available within the manuscript and the Raw data that support the findings of this study are available from the corresponding author upon request.

References

  1. M. Katayama, H. Morimoto, S. Yasuda, T. Takamura, H. Tanaka, M. Hijigawa, SID 88 Digest (1998) 310

  2. K. Sato, Y. Gotoh, Y. Hayashi, K. Adachi, H. Nishimura, Technical Digest of the International (PVSEC-5, Kyoto, 1990), p.1032

    Google Scholar 

  3. M. Yasukawa, H. Hosono, N. Ueda, H. Kawazoe, J. Ceram. Soc. Jpn. 103, 455 (1995)

    Article  CAS  Google Scholar 

  4. T. Omata, N. Ueda, N. Hikuma, K. Udea, H. Mizoguchi, T. Hashimoto, H. Kawazoe, Appl. Phys. Lett. 62, 499 (1993)

    Article  CAS  Google Scholar 

  5. H. Kawazoe, N. Ueda, H. Unno, T. Omata, H. Hosono, H. Tanoue, J. Appl. Phys. 76(12), 7935 (1994)

    Article  CAS  Google Scholar 

  6. T. Tanaka, K. Kawabata, M. Hirose, Thin Solid Films 281–282, 179 (1996)

    Article  Google Scholar 

  7. G. Thomas, Invisible circuits. Nature 389, 907–908 (1997)

    Article  CAS  Google Scholar 

  8. M. Grundmann et al., Oxide bipolar electronics: materials, devices and circuits. J. Phys. D Appl. Phys. 49, 213001 (2016)

    Article  Google Scholar 

  9. Y. Tsur, I. Riess, Self-compensation in semiconductors. Phys. Rev. B 60, 8138–8146 (1999)

    Article  CAS  Google Scholar 

  10. D.C. Look et al., Self-compensation in semiconductors: the Zn vacancy in Ga-doped ZnO. Phys. Rev. B 84, 115202 (2011)

    Article  Google Scholar 

  11. M. Grundmann, F.L. Schein, M. Lorenz, T. Böntgen, J. Lenzner, H.V. Wenckstern, Cuprous iodide: a p-type transparent semiconductor, history, and novel applications. Phys. Status Solidi A 210, 1671–1703 (2013)

    Article  CAS  Google Scholar 

  12. B.L. Zhu, X.Z. Zhao, Transparent conductive CuI thin films prepared by pulsed laser deposition. Phys. Status Solidi A 208, 91–96 (2011)

    Article  CAS  Google Scholar 

  13. B.R. Sankapal, A. Ennaoui, T. Guminskaya, T. Dittrich, W. Bohne, J. Rohrich, E. Strub, Lux-Steiner, characterization of p-CuI prepared by the SILAR technique on Cu-tape/n-CuInS2 for solar cells. Thin Solid Films 480, 142–146 (2005)

    Article  Google Scholar 

  14. C.H. Cheng, J. Wang, G.T. Du, S.H. Shi, Z.J. Du, Z.Q. Fan, J.M. Bian, M.S. Wang, Organic solar cells with remarkable enhanced efficiency by using a CuI buffer to control the molecular orientation and modify the anode. Appl. Phys. Lett. 97, 083305 (2010)

    Article  Google Scholar 

  15. D.A. Keen, S. Hull, The high-temperature structural behaviour of copper(I) iodide. J. Phys.: Condens. Matter 7, 5793–5804 (1995)

    CAS  Google Scholar 

  16. K.K. Chinnakutti, V. Panneerselvam, D. Govindarajan, A.K. Soman, K. Parasuraman, S.T. Salammal, Prog. Nat. Sci.: Mater. Int. 29, 533–540 (2019)

    Article  CAS  Google Scholar 

  17. S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Structural, optical and electrical properties of F-doped ZnO nanorod semiconductor thin films deposited by solgel process. Appl. Surf. Sci. 255, 2353–2359 (2008)

    Article  CAS  Google Scholar 

  18. F. Yakuphanoglu, Y. Caglar, S. Ilican, M. Caglar, The effects of fluorine on the structural, surface morphology and optical properties of ZnO thin films. Phys. B 394, 86–92 (2007)

    Article  CAS  Google Scholar 

  19. X.B. Wang, C. Song, K.W. Geng, F. Zeng, F. Pan, Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering. Appl. Surf. Sci. 253, 6905–6909 (2007)

    Article  CAS  Google Scholar 

  20. N. Ghazal, M. Madkour, A.A. Nazeer, S.S.A. Obayya, S.A. Mohamedad, Electrochemical capacitive performance of thermally evaporated Al-doped CuI thin films. RSC Adv. 11, 39262–39269 (2021)

    Article  CAS  Google Scholar 

  21. A. Liu, H. Zhu, W.T. Park, High-performance p-channel transistors with transparent Zn doped-CuI. Nat. Commun. 11(1), 1–8 (2020)

    CAS  Google Scholar 

  22. M. Xia, M. Gu, X. Liu, B. Liu, S. Huang, C. Ni, Electrical and luminescence properties of Zn2 + doped CuI thin films. J. Mater. Sci: Mater. Electron. 26, 2629–2633 (2015)

    CAS  Google Scholar 

  23. K.O. Ighodalo, D. Obi, A. Agbogu, B.N. Ezealigo, A.C. Nwanya, S.L. Mammah, R. Bucher, M. Maaza, F. I. Ezema, the structural and optical properties of metallic doped copper (I) iodide thin films synthesized by SILAR method. Mater. Res. Bull 94, 528–536 (2017)

    Article  CAS  Google Scholar 

  24. M. Peiteado, Y. Iglesias, J.F. Fernandez, J. De Frutos, A.C. Caballero, Microstructural development of tin-doped ZnO bulk ceramics. Mater. Chem. Phys. 101(1), 1–6 (2007)

    Article  CAS  Google Scholar 

  25. Y. Caglar, S. Aksoy, S. Ilican, M. Caglar, Crystalline structure and morphological properties of undoped and Sn doped ZnO thin films. Superlattices Microstruct. 46, 469–475 (2009)

    Article  CAS  Google Scholar 

  26. M. Rusop, T. Shirata, P.M. Sirimanne, T. Soga, T. Jimbo, Jpn. J. Appl. Phys. 42, 4966 (2003)

    Article  CAS  Google Scholar 

  27. M. Rusop, T. Soga, T. Jimbo, M. Umeno, Surf. Rev. Lett. 11, 577 (2004)

    Article  CAS  Google Scholar 

  28. A. Umar, A. Al-Hajry, Y.B. Hahn, D.H. Kim, Rapid synthesis and dye-sensitized solar cell applications of hexagonal-shaped ZnO nanorods. Electrochim. Acta 54, 5358–5362 (2009)

    Article  CAS  Google Scholar 

  29. K. Kawabata, S. Kayano, T. Tanaka, J. Vac Soc. Jpn 36, 144 (1993) (in Japanese)

  30. K. Tennakone, G.R.R.A. Kumara, I.R.M. Kottegoda, V.P.S. Perera, G.M.L.P. Aponsu, K.G.U. Wijayanth, Sol. Energy Mater. Sol. Cells 55, 283 (1998)

    Article  CAS  Google Scholar 

  31. B.R. Sankapal, E. Goncalves, A. Ennaoui, M.C. Lux-Steiner, Thin Solid Films 451/452, 128 (2004)

    Article  Google Scholar 

  32. W.M.K.P. Wijekoon, M.Y.M. Lyktey, P.N. Prasad, J.F. Garvey, J. Appl. Phys. 74, 5767 (1993)

    Article  CAS  Google Scholar 

  33. S. Naseem Ahmad, Khan, Effect of (Mn-Co) co-doping on the structural, morphological, optical, photoluminescence and electrical properties of SnO2. J. Alloys Compd. 720, 502–509 (2017)

    Article  Google Scholar 

  34. N. Ghazal, M. Madkour, A.A. Nazeer, S.S.A. Obayya, S.A. Mohamed, Electrochemical capacitive performance of thermally evaporated Al-doped CuI thin films. RSC Adv. 11, 39262–39269 (2021)

    Article  CAS  Google Scholar 

  35. H.H. Mahmoud, I.K. Battisha, F.M. Ezz-Eldin, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 150, 72 (2015)

    Article  CAS  Google Scholar 

  36. S.M. Ali, S.M. Ramaya, N.U. Rehman, T.S. ALKhuraiji, M.A. Shar, A. Mahmood, A. Hassan, M. Riaz, Mater. Sci. Semiconduct. Process 93, 44–49 (2019)

    Article  CAS  Google Scholar 

  37. M.T.S. Nair, P.K. Nair, R.A. Zingaro, E.A. Meyers, J. Appl. Phys. 74(3), 1879 (1993)

    Article  CAS  Google Scholar 

  38. M. Kumari, P. Rana, R.P. Chauhan, Nucl. Inst. Methods Phys. Res. A 753, 116–120 (2014)

    Article  CAS  Google Scholar 

  39. A. Somvanshi, S. Husain, S. Manzoor, Tuning of magnetic properties and multiferroic nature: case study of cobalt-doped NdFeO3. Appl. Phys. A 127, 174 (2021)

    Article  CAS  Google Scholar 

  40. R.D. Tarey, T.A. Raju, Thin Solid Films 128, 181 (1985)

    Article  CAS  Google Scholar 

  41. T. Ren, H.R. Baker, K.M. Poduska, Thin Solid Films 515, 7976 (2007)

    Article  CAS  Google Scholar 

  42. R.E. Marottia, D.N. Guerraa, C. Bellob, G. Machadoa, E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 82, 85 (2004)

    Article  Google Scholar 

  43. J.F. Condeles, R.A. Ando, M. Mulato, J. Mater. Sci. 43, 525–529 (2008)

    Article  CAS  Google Scholar 

  44. A. Grisel, P. Schmid, Phys. Status Solidi (b) 73, 587–591 (1976)

    Article  CAS  Google Scholar 

  45. N. Preda, L. Mihut, M. Baibarac, I. Baltog, S. Lefrant, J. Phys.: Condens. Matter 18, 8899 (2006)

    CAS  Google Scholar 

  46. F. Staub, H. Hempel, J.C. Hebig, J. Mock, U.W. Paetzold, U. Rau, T. Unold, T. Kirchartz, Phys. Rev. Appl. 6, 044017 (2016)

    Article  Google Scholar 

  47. C.M. Wolff, F. Zu, A. Paulke, L.P. Toro, N. Koch, D. Neher, Adv. Mater 29, 1700159 (2017)

    Article  Google Scholar 

  48. T. Kirchartz, J.A. Márquez, M. Stolterfoht, T. Unold, Adv. Energy Mater 10, 1904134 (2020)

    Article  CAS  Google Scholar 

  49. K.M. Abhirami, R. Sathyamoorthy, K. Asokan, Radiat. Phys. Chem. 91, 35–39 (2013)

    Article  CAS  Google Scholar 

  50. P. Chavan, L.R. Naik, Investigation of energy band gap and conduction mechanism of magnesium substituted nickel ferrite nanoparticles. Phys. Status Solidi A 214, 1700077 (2017)

    Article  Google Scholar 

  51. A. Benhaoua, A. Rahal, B. Benhaoua, M. Jlassi, Effect of fluorine doping on the structural, optical and electrical properties of SnO2 thin films prepared by spray ultrasonic. Superlattices Microstruct 70, 61–69 (2014)

    Article  CAS  Google Scholar 

  52. I. Soumahoro, G. Schmerber, A. Douayar, S. Colis, M. Abd-Lefdil, N. Hassanain, A. Berrada, D. Muller, A. Slaoui, H. Rinnert, A. Dinia, J. Appl. Phys. 109, 033708 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Shaqra University Saudi Arabia for supporting this work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SMA: methodology, MSA and SMA: analysis, HK and SSA: investigation, SMA and HK: writing-original draft preparation, SMA: Revision, SMA, AA, AM, KS, FNA.

Corresponding author

Correspondence to Syed Mansoor Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this manuscript.

Research involving human and animal participants

This article does not contain any study involving animals and human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.M., Almohammedi, A., AlGarawi, M.S. et al. Influence of Sn doping on the structure, optical, and electrical properties of p-type cuprous iodide thin films. J Mater Sci: Mater Electron 34, 125 (2023). https://doi.org/10.1007/s10854-022-09619-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09619-2

Navigation