Skip to main content

Advertisement

Log in

Improved energy-storage performance of (1–x)[(Bi0.5Na0.5)0.94Ba0.06]0.98La0.02TiO3xBi(Mg0.5Zr0.5)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free ceramic capacitors have attracted growing demand for energy-storage. Here, (1 − x)[(Bi0.5Na0.5)0.94Ba0.06]0.98La0.02TiO3xBi(Mg0.5Zr0.5)O3 ((1 − x)BNBLT–xBMZ, x = 0–0.3) ceramics were synthesized via citrate combustion technology. The nanoscale domains are observed and slim hysteresis loops are realized as addition of BMZ. The recoverable energy-storage density (Wre of 2.6 J/cm3) and efficiency (η of 81%) are obtained in 0.8BNBLT-0.2BMZ sample under 160 kV/cm. The energy-storage performances of 0.8BNBLT-0.2BMZ sample show excellent frequency stability (Wre varies 4% and η varies 2.5% at 5 Hz to 100 Hz). More importantly, Wre increases from 1.02 to 1.36 J/cm3 with increasing temperature from 20 to 120 ºC, and η increases from 80 to 97% at 100 kV/cm, which demonstrates that it is the promising candidate for high temperature energy-storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Wang, H. Yuan, X. Li, F. Zeng, K. Wu, Q. Zheng, G. Fan, D. Lin, Chem. Eng. J. 394, 124879 (2020)

    Article  CAS  Google Scholar 

  2. X. Jiang, H. Ha, S. Zhang, J. Lv, M. Cao, Z. Yao, H. Liu, J. Eur. Ceram. Soc. 39, 1103 (2019)

    Article  CAS  Google Scholar 

  3. D. Li, Y. Lin, M. Zhang, H. Yang, Chem. Eng. J. 392, 123729 (2020)

    Article  CAS  Google Scholar 

  4. Z. Xu, J. Wang, Y. Chen, J. Mater. Sci. Mater. Electron. 32, 4885 (2021)

    Article  CAS  Google Scholar 

  5. X. Wang, X. Wu, D. Yang, J. Yin, J. Wu, Chem. Eng. J. 447, 137494 (2022)

    Article  CAS  Google Scholar 

  6. Z. Xu, H. Qiang, Y. Chen, Mater. Lett. 259, 126894 (2020)

    Article  CAS  Google Scholar 

  7. L. Zhang, Z. Wang, Y. Li, P. Chen, J. Cai, Y. Yan, Y. Zhou, D. Wang, G. Liu, J. Eur. Ceram. Soc. 39, 3057 (2019)

    Article  CAS  Google Scholar 

  8. H. Qiang, Z. Xu, J. Mater. Sci. Mater. Electron. 31, 14921 (2020)

    Article  CAS  Google Scholar 

  9. J. Gao, Y. Zhang, L. Zhao, K.Y. Lee, Q. Liu, A. Studer, M. Hinterstein, S. Zhang, J.F. Li, J. Mater. Chem. A 7, 2225 (2019)

    Article  CAS  Google Scholar 

  10. Z. Lu, W. Bao, G. Wang, S.K. Sun, L. Li, J. Li, H. Yang, H. Ji, A. Feteira, D. Li, F. Xu, A.K. Kleppe, D. Wang, S.Y. Liu, I.M. Reaney, Nano Energy 79, 105423 (2021)

    Article  CAS  Google Scholar 

  11. S. Li, T. Hu, H. Nie, Z. Fu, C. Xu, F. Xu, G. Wang, X. Dong, Energy Storage Mater. 34, 417 (2021)

    Article  Google Scholar 

  12. F. Yang, H. Wang, Q. Li, A.K. Yadav, H. Fan, Ceram. Int. 47, 33162 (2021)

    Article  CAS  Google Scholar 

  13. P. Butnoi, S. Manotham, P. Jaita, C. Randorn, G. Rujijanagul, J. Eur. Ceram. Soc. 38, 3822 (2018)

    Article  CAS  Google Scholar 

  14. D. Wang, Z. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, X. Tan, I.M. Reaney, J. Mater. Chem. A 6, 4133 (2018)

    Article  CAS  Google Scholar 

  15. J. Yin, Y. Zhang, X. Lv, J. Wu, J. Mater. Chem. A 6, 9823 (2018)

    Article  CAS  Google Scholar 

  16. F. Yang, Q. Li, A. Zhang, Y. Jia, Y. Sun, W. Wang, H. Fan, J. Alloys Compd. 925, 166782 (2022)

    Article  CAS  Google Scholar 

  17. S. Zheng, Q. Li, Y. Chen, A.K. Yadav, W. Wang, H. Fan, J. Alloys Compd. 911, 165019 (2022)

    Article  CAS  Google Scholar 

  18. Y. Lin, D. Li, M. Zhang, S. Zhan, Y. Yang, H. Yang, Q. Yuan, A.C.S. Appl, Mater. Interfaces 11, 36824 (2019)

    Article  CAS  Google Scholar 

  19. H. Qiang, L. Deng, Z. Xu, Phys. Status Solidi A 219, 2200071 (2022)

    Article  CAS  Google Scholar 

  20. Y. Huang, C. Zhao, B. Wu, J. Wu, A.C.S. Appl, Mater. Interfaces 12, 23885 (2020)

    Article  CAS  Google Scholar 

  21. Y.S. Jung, E.S. Na, U. Paik, J. Lee, L. Kim, Mater. Res. Bull. 37, 1633 (2002)

    Article  CAS  Google Scholar 

  22. H. Yang, F. Yan, Y. Lin, T. Wang, Energy Technol. 6, 357 (2018)

    Article  CAS  Google Scholar 

  23. Q. Li, M. Li, C. Wang, M. Zhang, H. Fan, Ceram. Int. 16, 19822 (2019)

    Article  Google Scholar 

  24. N. Kumar, A. Ionin, T. Ansell, S. Kwon, W. Hackenberger, D. Cann, Appl. Phys. Lett. 106, 252901 (2015)

    Article  Google Scholar 

  25. H. Ogihara, C.A. Randall, S.T. McKinstry, J. Am. Ceram. Soc. 92, 110 (2009)

    Article  CAS  Google Scholar 

  26. N. Triamnak, R. Yimnirun, J. Pokorny, D.P. Cann, J. Am. Ceram. Soc. 96, 3176 (2013)

    Article  CAS  Google Scholar 

  27. H. Yang, F. Yan, Y. Lin, T. Wang, A.C.S. Sustain, Chem. Eng. 5, 10215 (2017)

    CAS  Google Scholar 

  28. Y. Bai, G.P. Zheng, S.Q. Shi, Mater. Res. Bull. 46, 1866 (2011)

    Article  CAS  Google Scholar 

  29. X. Qiao, X. Chao, Z. Yang, J. Mater. Sci. Mater. Electron. 33, 2012 (2022)

    Article  CAS  Google Scholar 

  30. B. Hu, H. Fan, L. Ning, Y. Wen, C. Wang, Ceram. Int. 44, 15160 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author ZX is responsible for ensuring that the descriptions are accurate and agreed by all authors. The role(s) of all authors is listed as follows, HQ: Resource and writing original draft, XW: Experiment and Investigation, LD: Investigation and resource, ZX: Review & editing.

Corresponding author

Correspondence to Zunping Xu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiang, H., Wang, X., Deng, L. et al. Improved energy-storage performance of (1–x)[(Bi0.5Na0.5)0.94Ba0.06]0.98La0.02TiO3xBi(Mg0.5Zr0.5)O3 ceramics. J Mater Sci: Mater Electron 34, 108 (2023). https://doi.org/10.1007/s10854-022-09610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09610-x

Navigation