Skip to main content

Advertisement

Log in

Enhancing electrochemical performance of TiO2 microsphere electrodes for supercapacitors via a simple heat treatment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The wettability of the electrode is critical to the performance of supercapacitor. In this work, a simple heat treatment strategy was applied to modify the electrochemical performance of TiO2 microsphere electrode. This heat treatment increases a large number of micropores and moderate mesopores while reducing the hydrophobic groups on the surface of TiO2, thereby improving the electrochemical performance of the TiO2 microsphere electrode. After heat treatment, the areal capacitance of the TiO2 microsphere electrode increased from 4.95 to 58.58 mF/cm2 at a current density of 1 mA/cm2, and the capacitance retention rate still retained 96.9% after 10,000 cycles. This simple heat treatment modification method provides considerable potential for the application of supercapacitors in the field of energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Liu, Y. Li, InfoMat 2, 807 (2020)

    Article  CAS  Google Scholar 

  2. Z.-K. He, Y. Lu, C. Zhao, J. Zhao, Z. Gao, Y.-Y. Song, Appl. Surf. Sci. 567, 150832 (2021)

    Article  CAS  Google Scholar 

  3. M.B. Poudel, H.J. Kim, J. Energy Chem. 64, 475 (2022)

    Article  CAS  Google Scholar 

  4. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Int. J. Hydrogen Energy 47, 14319 (2022)

    Article  CAS  Google Scholar 

  5. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, J. Mol. Liq. 337, 116405 (2021)

    Article  CAS  Google Scholar 

  6. S. Li, K. Yang, P. Ye, K. Ma, Z. Zhang, Q. Huang, Appl. Surf. Sci. 503, 144090 (2020)

    Article  CAS  Google Scholar 

  7. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, J. Mater. Sci.: Mater. Electron. 27, 1244 (2015)

    Google Scholar 

  8. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Int. J. Hydrogen Energy 44, 24005 (2019)

    Article  CAS  Google Scholar 

  9. I. Heng, C.W. Lai, J.C. Juan, A. Numan, J. Iqbal, E.Y.L. Teo, Ceram. Int. 45, 4990 (2019)

    Article  CAS  Google Scholar 

  10. C. Yang, X. Wang, W. Dong, I.-W. Chen, Z. Wang, J. Xu, T. Lin, H. Gu, F. Huang, Sci. China Mater. 63, 1227 (2020)

    Article  CAS  Google Scholar 

  11. Z. Yin, J. Shao, W. Tang, W. Sheng, D. Sun, Y. Xiao, S. Cao, Nanotechnology 31, 275401 (2020)

    Article  CAS  Google Scholar 

  12. H.-J. Choi, J.H. Kim, H.-K. Kim, S.-H. Lee, Y.-H. Lee, Electrochim. Acta 208, 202 (2016)

    Article  CAS  Google Scholar 

  13. J.V. Patil, S.S. Mali, C.K. Hong, J.H. Kim, P.S. Patil, Appl. Phys. A 123, 610 (2017)

    Article  Google Scholar 

  14. J. Xu, R. Zhang, P. Chen, S. Ge, J. Power Sources 246, 132 (2014)

    Article  CAS  Google Scholar 

  15. L. Jiang, H. Tian, W. Shen, Y. Wang, Y. Ma, P. Hou, Y. Wu, P. Xiang, T. Xiao, X. Tan, Mater. Lett. 295, 129840 (2021)

    Article  CAS  Google Scholar 

  16. H. Xiao, W. Guo, B. Sun, M. Pei, G. Zhou, Electrochim. Acta 190, 104 (2016)

    Article  CAS  Google Scholar 

  17. D. Prashad Ojha, M. Babu Poudel, H. Joo Kim, Mater. Lett. 264, 127363 (2020)

    Article  CAS  Google Scholar 

  18. D. Dong, Y. Zhang, T. Wang, J. Wang, C.E. Romero, W. Pan, Mater. Chem. Phys. 252, 123381 (2020)

    Article  CAS  Google Scholar 

  19. H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, L. Lu, Electrochim. Acta 116, 129 (2014)

    Article  CAS  Google Scholar 

  20. F. Tian, Y. Zhang, J. Zhang, C. Pan, J. Phys. Chem. C 116, 7515 (2012)

    Article  CAS  Google Scholar 

  21. R. Kumar, B.K. Singh, A. Soam, S. Parida, V. Sahajwalla, P. Bhargava, Nanoscale Adv. 2, 2376 (2020)

    Article  CAS  Google Scholar 

  22. Y. Jin, H. Yu, X. Liang, ACS Appl. Mater. Interfaces 12, 41368 (2020)

    Article  CAS  Google Scholar 

  23. Y. Xie, D. Fu, Mater. Res. Bull. 45, 628 (2010)

    Article  CAS  Google Scholar 

  24. M. Qorbani, O. Khajehdehi, A. Sabbah, N. Naseri, Chemsuschem 12, 4064 (2019)

    Article  CAS  Google Scholar 

  25. Z. Zheng, J. Chen, R. Yoshida, X. Gao, K. Tarr, Y.H. Ikuhara, W. Zhou, Nanotechnology 25, 435406 (2014)

    Article  Google Scholar 

  26. W. Zhong, S. Sang, Y. Liu, Q. Wu, K. Liu, H. Liu, J. Power Sources 294, 216 (2015)

    Article  CAS  Google Scholar 

  27. C.C. Raj, R. Sundheep, R. Prasanth, Electrochim. Acta 176, 1214 (2015)

    Article  CAS  Google Scholar 

  28. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett. 12, 1690 (2012)

    Article  CAS  Google Scholar 

  29. S. Ozkan, N.T. Nguyen, I. Hwang, A. Mazare, P. Schmuki, Small 13, 1603821 (2017)

    Article  Google Scholar 

  30. P. Pazhamalai, K. Krishnamoorthy, V.K. Mariappan, S.-J. Kim, J. Colloid Interface Sci. 536, 62 (2019)

    Article  CAS  Google Scholar 

  31. C. Zhang, J. Xing, H. Fan, W. Zhang, M. Liao, Y. Song, J. Mater. Sci. 52, 3146 (2016)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [YW], [PX], [LHJ], [TX], and [XYT]. The first draft of the manuscript was written by [YW] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Peng Xiang or Xinyu Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Xiang, P., Jiang, L. et al. Enhancing electrochemical performance of TiO2 microsphere electrodes for supercapacitors via a simple heat treatment. J Mater Sci: Mater Electron 34, 153 (2023). https://doi.org/10.1007/s10854-022-09595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09595-7

Navigation