Skip to main content
Log in

Growth, electrical, electronic, NLO, spectral, SEM studies of LA crystals of macro, micro-scales for utilization in devices, displays and in micro-photonics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The L-Alanine (LA) crystals are grown using slow evaporation method with the cell dimensions as a = 5.7780(5) Å; b = 6.0284(6) Å; c = 12.3237(12) Å. The dielectric constant and dielectric loss of the LA micro crystals are having higher value at low frequencies and lower value at higher value of frequencies; Z Scan methodology envisages the nonlinear nature of LA specimen; the third order non linear susceptibility is 1.90 × 10–6 esu; 8.89 × 10–6 esu for macro, micro scalings and having phase matching proviso for micro-LA of 38.2 mV. The doubling esteem of Op-amp for the input frequency is properly analyzed for the macro; micro level coated ones and is of 2.07 times that of the input esteem, 2.12 times that of the input esteem. The values of 2.9876, 3.4343 and 3.8912 microns for macro, thin-film and micro level influx of LA. Voltage regulation enhancing the use in boosting and bucking materials with LA micro-ones. The LA micro crystalline material is of 10 μm specification tells that the specimen has no flaws; the stereographic consequence of LA crystal with hkl max and Laue’s effect of LA crystal with 2717 reflections and angle portrayal for hkl1 as (100) and hkl2 as (111) is 46.85°; the computational approach for LA for Halosian impactness for projection in a giant scale. The weak interaction profile of 50% effect by VanderWaal’s is properly portrayed; the nano-tube of 22 nm of 3 × 3 value of n, m for peptide bond of Arginine triplets case for 5 × 5 × 5 holder of LA are pronounced with the 4 × 4 × 4 super cell impacting of LA material. The projected data of LA structure for (101) orientation and for (111) orientation with the cloned cluster effect of LA crystals for thermal imaging; cluster effectiveness; to be employed in imaging and display circuits also analyzed for micro-photonic utilities with 3.98 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

Data are not submitted anywhere and all studies performed are presented here; no data separately available in any system or mode.

References

  1. M.A. Rajkumar, S.S. John Xavier, S. Anbarasu, P.A. Devarajan, Microhardness. Res J Phy Sci. 2(1), 1–4 (2014)

    Google Scholar 

  2. A.R. James, S. Priya, K. Uchino, K.J. Srinivas, Appl. Phys. 90, 3504 (2001)

    Article  CAS  Google Scholar 

  3. B. Chatterjee, P.N. Gupta, Non-Cryst. Solids. 358, 3355 (2012)

    Article  CAS  Google Scholar 

  4. G. Wilcox, Clin. Biochem. Rev. 26, 19 (2005)

    Google Scholar 

  5. S. Gunasekaran et al., Indian J. Phys. 87, 1189–1197 (2013). https://doi.org/10.1007/s12648-013-0363-8

    Article  CAS  Google Scholar 

  6. K. Kumar et al., J. Mater. Sci. Mater. Electron. 31(23), 1–8 (2020). https://doi.org/10.1007/s10854-020-04594-y

    Article  CAS  Google Scholar 

  7. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Article  CAS  Google Scholar 

  8. L.J. Farrugia, J. Appl. Cryst. 45, 849 (2012)

    Article  CAS  Google Scholar 

  9. M. Jothibas et al., AIP Conf. Proc. 2162, 020151 (2019). https://doi.org/10.1063/1.5130361

    Article  CAS  Google Scholar 

  10. M. Kolanjinathan et al., Mater Today Proceed (2020). https://doi.org/10.1016/j.matpr.2020.01.575

    Article  Google Scholar 

  11. N. Kishore, K. SenthilKannan, T. Periyanayagi et al., Appl. Phys. A 123, 706 (2017). https://doi.org/10.1007/s00339-017-1330-6

    Article  CAS  Google Scholar 

  12. P. Saravanan et al., J. Mater. Sci. Mater. Electron. 31, 4301 (2020). https://doi.org/10.1007/s10854-020-02985-9

    Article  CAS  Google Scholar 

  13. P.R. Spackman, M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, D. Jayatilaka, M.A.J. Spackman, Appl. Cryst. 54(3), 1006 (2021)

    Article  CAS  Google Scholar 

  14. R.P. Patel et al., Braz J Phys 51, 339–350 (2021). https://doi.org/10.1007/s13538-021-00883-x

    Article  CAS  Google Scholar 

  15. S. Hossain, Electromagn. Biol Med. 40, 65 (2021). https://doi.org/10.1080/15368378.2020.1850471

    Article  Google Scholar 

  16. T.M. Rekha et al., Int. Res. J. Nat. Appl. Sci. 5(4), 133 (2018)

    Google Scholar 

  17. K. SenthilKannan et al., Int. J. ChemTech Res. 6(5), 3187–3190 (2014)

    CAS  Google Scholar 

  18. K. SenthilKannan, Int. J. Eng. Sci. Math. 7, 1–3 (2018)

    Google Scholar 

  19. K. SenthilKannan et al., Int. J. Chemtech. Res. 6, 3187 (2014)

    CAS  Google Scholar 

  20. K. SenthilKannan, Int. J. Eng. Math. 7, 1 (2018)

    Google Scholar 

  21. K. SenthilKannan, S. Gunasekaran, K.A. Seethalakshmi, Int. J. Sci. Eng. 4, 2 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors thank for the facilities of SXRD from Cochin University; dielectric from LC, Chennai; electronic use from Phoenix Group-Nagai and SIMATS; SEM from IITM; NLO from Crescent Univ.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

VK—contributed to electrical, electronic analysis of all influx. SS—contributed to SEM with interactions of the surface and thermal projection. MV—Submission, computational interactions and surface impactness of micro-crystals. KS—contributed to crystal growth, overall write up, other studies NLO and paper responsibility, analyzed XRD and device use, clone effect.

Corresponding authors

Correspondence to M. Vimalan or K. SenthilKannan.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

All authors agreed to proceed; and equally contributed; this paper is not presented anywhere for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaipoonguzhali, V., Surendarnath, S., Vimalan, M. et al. Growth, electrical, electronic, NLO, spectral, SEM studies of LA crystals of macro, micro-scales for utilization in devices, displays and in micro-photonics. J Mater Sci: Mater Electron 34, 107 (2023). https://doi.org/10.1007/s10854-022-09586-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09586-8

Navigation