Skip to main content
Log in

Development of large size fast timing and radiation resistant PVT-based plastic scintillator detector

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The fabrication and the scintillation properties of a polyvinyltoluene-based plastic scintillator doped with 2,5-diphenyloxazole (PPO) and 1,4-bis[2-(phenyloxazolyl)]-benzene (POPOP) are presented. The XRD structural analysis and SEM-EDS technique confirm the amorphous nature of the material. The high optical transparency of 88% over the entire visible region, the refractive index of 1.57 near to that of glass and the emission wavelength at 425 nm make the synthesized PVT scintillator well suitable for radiation detection and measurements. The scintillation lifetime of 4 ns under 137Cs exposure revealed its utilization as fast timing detector for Time-of-Flight measurements. The fabricated scintillator shows a maximum light output of 65% of stilbene crystal. Scintillation light loss shown for 60Co irradiations with radiation doses of 1 Mrad and 1.98 Mrad evinced the good radiation hardness characteristic of the material, bringing about a best candidate for high radiation level environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors confirm that all the relevant data supporting the findings of the study are included in the submitted manuscript and any further data clarifications are available from the corresponding author, upon reasonable request.

References

  1. J.B. Birks, The Theory and Practice of Scintillation Counting: International Series of Monographs in Electronics and Instrumentation, vol. 27 (Elsevier, Amsterdam, 2013)

    Google Scholar 

  2. E.R. Siciliano, J.H. Ely, R.T. Kouzes, B.D. Milbrath, J.E. Schweppe, D.C. Stromswold, Comparison of PVT and NaI (tl) scintillators for vehicle portal monitor applications. Nucl. Instrum. Methods Phys. Res. A 550(3), 647–674 (2005)

    Article  CAS  Google Scholar 

  3. E. Montbarbon, Z. Zhang, A. Grabowski, R. Woo, D. Tromson, C. Dehé-Pittance, R.B. Pansu, G.H. Bertrand, M. Hamel, The role of the secondary fluorophore in ternary plastic scintillators aiming at discriminating fast neutrons from gamma-rays. J. Lumin. 213, 67–74 (2019)

    Article  CAS  Google Scholar 

  4. S.W. Moser, W.F. Harder, C.R. Hurlbut, M.R. Kusner, Principles and practice of plastic scintillator design. Radiat. Phys. Chem 41(1–2), 31–36 (1993)

    Article  CAS  Google Scholar 

  5. V.A. Li, T.M. Classen, S.A. Dazeley, M.J. Duvall, I. Jovanovic, A.N. Mabe, E.T.E. Reedy, F. Sutanto, A prototype for SANDD: a highly-segmented pulse-shape-sensitive plastic scintillator detector incorporating silicon photomultiplier arrays. Nucl. Instrum. Methods Phys. Res. A 942, 162334 (2019)

    Article  CAS  Google Scholar 

  6. N.P. Zaitseva, A.M. Glenn, A.N. Mabe, M.L. Carman, C.R. Hurlbut, J.W. Inman, S.A. Payne, Recent developments in plastic scintillators with pulse shape discrimination. Nucl. Instrum. Methods Phys. Res. A 889, 97–104 (2018)

    Article  CAS  Google Scholar 

  7. M.D. Palma, A. Quaranta, T. Marchi, G. Collazuol, S. Carturan, M. Cinausero, M. Degerlier, F. Gramegna, Red emitting phenyl-polysiloxane based scintillators for neutron detection. IEEE Trans. Nucl. Sci. 61(4), 2052–2058 (2014)

    Article  Google Scholar 

  8. M. Hamel, V. Simic, S. Normand, Fluorescent 1, 8-naphthalimides-containing polymers as plastic scintillators. An attempt for neutron–gamma discrimination. React. Funct. Polym. 68(12), 1671–1681 (2008)

    Article  CAS  Google Scholar 

  9. B.L. Funt, A. Hetherington, The influence of chain length on the luminescent output of plastic scintillators. Int. J. Appl. Radiat. Isot. 4, 3–4 (1959)

    Article  Google Scholar 

  10. E. Chauveau, Dissertation, Université de Bordeaux 1, (2010)

  11. J. Zhu, C. Deng, H. Jiang, Z. Zheng, R. Gong, Y. Bi, L. Zhang, R. Lin, The impact of fluorescent dyes on the performances of polystyrene-based plastic scintillators. Nucl. Instrum. Methods Phys. Res. A 835, 136–141 (2016)

    Article  CAS  Google Scholar 

  12. A.F. Molisch, B.P. Oehry, Radiation Trapping in Atomic Vapours (Oxford University Press, Oxford, 1998)

    Google Scholar 

  13. A.F. Adadurov, P.N. Zhmurin, V.N. Lebedev, V.D. Titskaya, Optimizing concentration of shifter additive for plastic scintillators of different size. Nucl. Instrum. Methods Phys. Res. A 599, 2–3 (2009)

    Article  Google Scholar 

  14. Y.N. Kharzheev, Radiation hardness of scintillation detectors based on organic plastic scintillators and optical fibers. Phys. Part. Nucl. 50(1), 42–76 (2019)

    Article  CAS  Google Scholar 

  15. M.A. Ahmed, R.M. Khafagy, S.T. Bishay, N.M. Saleh, Effective dye removal and water purification using the electric and magnetic Zn0.5Co0.5Al0.5Fe1.46La0.04O4/polymer core–shell nanocomposites. J. Alloys Compd. 578, 121–131 (2013)

    Article  CAS  Google Scholar 

  16. M.T. Razzak, S.P. Dewi, H. Lely, E. Taty, The characterization of dressing component materials and radiation formation of PVA–PVP hydrogel. Radiat. Phys. Chem. 55(2), 153–165 (1999)

    Article  CAS  Google Scholar 

  17. S.R. Yousefi, D. Ghanbari, N.M. Salavati, Hydrothermal synthesis of nickel hydroxide nanostructures and flame retardant poly vinyl alcohol and cellulose acetate nanocomposites. J. Nanostruct. 6(1), 77–82 (2016)

    Google Scholar 

  18. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, A new nanocomposite superionic system (CdHgI4/HgI2): synthesis, characterization and experimental investigation. Adv. Powder Technol. 28(4), 1258–1262 (2017)

    Article  CAS  Google Scholar 

  19. S.S. Devangamath, B. Lobo, Structural, optical and electrical studies on hybrid material of in situ formed silver sulfide in polymer blend matrix. J. Inorg. Organomet. Polym. Mater. 29(5), 1466–1475 (2019)

    Article  CAS  Google Scholar 

  20. A.J. Pai, B.K. Sarojini, K.R. Harshitha, B.S. Holla, A.G. Lobo, Spectral, morphological and optical studies on bischalcone doped polylactic acid (PLA) thin films as luminescent and UV radiation blocking materials. Opt. Mater. 90, 145–151 (2019)

    Article  CAS  Google Scholar 

  21. S. Lee, J. Son, D.G. Kim, J. Choi, Y.K. Kim, Characterization of plastic scintillator fabricated by UV LED curing machine. Nucl. Instrum. Methods Phys. Res. A 929, 23–28 (2019)

    Article  CAS  Google Scholar 

  22. G.F. Knoll, Radiation Detection and Measurement (Wiley, New York, 2010)

    Google Scholar 

  23. T. Kamalesh, P. Karuppasamy, M.S. Pandian, P. Ramasamy, S. Verma, Growth of large size triphenylphosphine oxide 4-Nitrophenol (TP4N) single crystal by Sankaranarayanan–Ramasamy (SR) method for third order nonlinear optical applications. Chin. J. Phys. 76, 68–78 (2022)

    Article  CAS  Google Scholar 

  24. T. Hasegawa, Advanced multiple-angle incidence resolution spectrometry for thin-layer analysis on a lowrefractive-index substrate. Anal. Chem. 79(12), 4385–4389 (2007)

    Article  CAS  Google Scholar 

  25. L.J. Basile, Characteristics of plastic scintillators. J. Chem. Phys. 27(3), 801–806 (1957)

    Article  CAS  Google Scholar 

  26. A. Wieczorek, A. Kochanowski. Development of novel plastic scintillators based on polyvinyltoluene for the hybrid J-PET/MR tomograph. arXiv preprint https://arxiv.org/abs/1710.08136(2017)

  27. Organic Scintillation Materials, Saint-Gobain Crystals, Paris, France

  28. R.N. Nurmukhametov, L. Volkova, V.G. Klimenko, S.P. Kabanov, R. Salov, Fluorescence and absorption of a polystyrene-based scintillator exposed to UV laser radiation. J. Appl. Spectrosc. 74.6, 824–830 (2007)

    Article  Google Scholar 

  29. Y. Nagumo, K. Okada, T. Tadokoro, Y. Ueno, J. Nukaga, T. Ishitsu, I. Takahashi, Y. Fujishima, K. Hayashi, K. Nagashima, Development of a gamma camera to image radiation fields. Prog. Nucl. Sci. Technol. 4(1), 14–17 (2014)

    Google Scholar 

  30. I. Hossain, N. Sharip, K.K. Viswanathan, Efficiency and resolution of HPGe and NaI (tl) detectors using gamma-ray spectroscopy. Sci. Res. Essays 7(1), 86–89 (2012)

    Article  CAS  Google Scholar 

  31. R. Rahmanifard, F. Katebi, A.R. Zahedi, R. Gholipour-Peyvandi, Synthesis and development of a vinyltoluene-based plastic scintillator. J. Lumin. 194, 456–460 (2018)

    Article  CAS  Google Scholar 

  32. C.H. Lee, J. Son, T.H. Kim, Y.K. Kim, Characteristics of plastic scintillators fabricated by a polymerization reaction. Nuclear Eng. Technol. 49(3), 592–597 (2017)

    Article  Google Scholar 

  33. B. Richard, Firestone. Table of Isotopes, CD ROM Edition, Version 1.0. (1996)

  34. E.V. van Loef, G. Markosyan, U. Shirwadkar, K.S. Shah, Plastic scintillators with neutron/gamma pulse shape discrimination. IEEE Trans. Nucl. Sci. 61(1), 467–471 (2013)

    Article  Google Scholar 

  35. Radiation Detection Scintillators | Crystals (saint-gobain.com)

  36. W. Mengesha, P.L. Feng, J.G. Cordaro, M. Anstey, N. Myllenbeck, D.J. Throckmorton. Plastic Scintillators Light Yield Energy Calibration. No. SAND2015-10999J. Sandia National Lab. (SNL-CA), Livermore, CA (United States), (2015)

  37. N.Z. Galunov, O.A. Tarasenko, V.A. Tarasov, Determination of the light yield of organic scintillators. Funct. Mater. 20(3), 304–309 (2013)

    Article  CAS  Google Scholar 

  38. L. Torrisi, Radiation damage in polyvinyltoluene (PVT). Radiat. Phys. Chem 63(1), 89–92 (2002)

    Article  CAS  Google Scholar 

  39. K. Wick, D. Paul, P. Schröder, V. Stieber, B. Bicken, Recovery and dose rate dependence of radiation damage in scintillators, wavelength shifters and light guides. Nucl. Instrum. Methods Phys. Res. B 61(4), 472–486 (1991)

    Article  Google Scholar 

  40. C. Zorn, A pedestrian’s guide to radiation damage in plastic scintillators. Nucl. Phys. B 32, 377–383 (1993)

    Article  CAS  Google Scholar 

  41. R.-Y. Zhu, Radiation damage in scintillating crystals. Nucl. Instrum. Methods Phys. Res. A 413.2–3, 297–311 (1998)

    Article  Google Scholar 

  42. C. Zorn, M. Bowen, S. Majewski, J. Walker, R. Wojcik, C. Hurlbut, W. Moser, Pilot study of new radiation-resistant plastic scintillators doped with 3-hydroxyflavone. Nucl. Instrum. Methods Phys. Res. A 273(1), 108–116 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Crystal Technology Section (CTS) & X-ray & Neutron Techniques Section (X&NTS), Technical Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai for providing the lab facility.

Funding

The authors are indebted to SERB, India for the financial support [Project sanction No: CRG/2020/003536].

Author information

Authors and Affiliations

Authors

Contributions

LA: material preparation, data collection and analysis, writing—original draft. RP: conceptualization, funding acquisition, supervision, project administration. S: visualization, data analysis. MT: visualization, investigation, writing—review and editing. The authors certify that this article has not been submitted or published in any other publications. The order of authors listed in the manuscript has been approved by all of them.

Corresponding author

Correspondence to Rajesh Paulraj.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alex, L., Paulraj, R., Sonu et al. Development of large size fast timing and radiation resistant PVT-based plastic scintillator detector. J Mater Sci: Mater Electron 34, 127 (2023). https://doi.org/10.1007/s10854-022-09577-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09577-9

Navigation