Skip to main content
Log in

Electromagnetic shielding in the X-band of composites based on 3D carbon structures using reticulated vitreous carbon and epoxy resin

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Currently, the use of electro-electronic equipment has been growing, with the consequent increase in electromagnetic pollution, harmful to the environment and living beings. Materials can mitigate this type of problem, seeking to combine, whenever possible, lighter and corrosion-resistant materials, replacing metallic materials. The present work studied the electromagnetic behavior in the X-band (8.2–12.4 GHz) of polymeric composites based on a 3D-carbon structure, named reticulated vitreous carbon (RVC) and epoxy resin (EP). RVC samples with different porosities (10, 30, 45, and 60 pores per inch, ppi) heat-treated at 1000 °C were used. Electrical conductivity measurements showed for the 30–60 ppi RVC samples high electrical conductivity values (~ 1–2 × 102 S/m) and the CVR/epoxy composites show a more insulating behavior (~ 0.1–1.4 × 10–1 S/m), due to the influence of the EP. The electromagnetic characterization showed the variation of the complex components of electrical permittivity and magnetic permeability as a function of the CVR porosity and, consequently, on the electromagnetic shielding (SE) behavior. SE values of up to ≈ 99.5% of incident radiation were obtained for the 60 ppi-RVC/EP composite, which has a greater number of alveoli per inch and a greater number of carbon struts. It was determined that wave energy losses in the composites occurred primarily by absorption, followed by reflection. In summary, all composites showed good total SE values (15.8–25.2 dB), indicating their potential use in different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

In accordance with the policy of the Journal.

References

  1. R. Panigrahi, S.K. Srivastava, Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: a novel approach. Sci. Rep. (2015). https://doi.org/10.1038/srep07638

    Article  Google Scholar 

  2. M. Angelopoulos, Conducting polymers in microelectronics. IBM J. Res. Dev. (2001). https://doi.org/10.1147/rd.451.0057

    Article  Google Scholar 

  3. R.A.M.C. Tosetto, Absorvedores de micro-ondas na banda X baseados em polipirrol/negro de fumo. Tese (Doutorado), Ciência e Tecnologia Aeroespacial, Instituto Tecnológico de Aeronáutica, São José dos Campos (2015).

  4. M.C. Rezende, E.L. Nohara, M.A.S. Miacci, Medidas de Refletividade de Materiais Absorvedores de radiação eletromagnética usando as técnicas RCS e NRL. Revista de Física Aplicada e Instrumentação, 16, 1, 1-7, 25 (2003).

  5. N. Wu, Q. Hu, R. Wei, X. Mai, N. Naik, D. Pan, Z. Guo, Z. Shi, Review on the electromagnetic interference shielding properties of carbon-based materials and their novel composites: recent progress, challenges and prospects. Carbon (2021). https://doi.org/10.1016/j.carbon.2021.01.124

    Article  Google Scholar 

  6. A.M. Gama, M.C. Rezende, Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials. J. Magn. Magn. Mater. (2011). https://doi.org/10.1016/j.jmmm.2011.05.052

    Article  Google Scholar 

  7. Y. Wang, Y. Huang, Q. Wang, Q. He, Preparation and electromagnetic properties of BaFe12O19–Ni0.8Zn0.2Fe2O/Polyrrole composite film. NANO (2013). https://doi.org/10.1142/s1793292013500227

    Article  Google Scholar 

  8. M. Bibi, S. Abbas, N. Ahmad, B. Muhammad, Z. Iqbal, U.A. Rana, S.U.-D. Khan, Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X-band. Compos. B (2017). https://doi.org/10.1016/j.compositesb.2017.01.034

    Article  Google Scholar 

  9. S.S. Pinto, R.C. Filipsen, N.A.S. Gomes, C.V. Opelt, M.C. Rezende, Morphological, electromagnetic and absorbing properties of PANI/epoxy resin samples. J. Polym. Sci. Eng. 1, 3 (2018)

    Google Scholar 

  10. M.F. Shakir, I.A. Rashid, A. Tariq, Y. Nawab, A. Afzal, M. Nabeel, A. Naseem, U. Hamid, EMI shielding characteristics of electrically conductive polymer blends of PS/PANI in microwave and IR region. J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07631-7

    Article  Google Scholar 

  11. B. Ribeiro, N.A.S. Gomes, M.C. Rezende, Lightweight multi-walled carbon nanotube buckypaper/glass fiber–epoxy composites for strong electromagnetic interference shielding and efficient microwave absorption. J. Mater. Sci. (2021). https://doi.org/10.1007/s10854-021-06007-0

    Article  Google Scholar 

  12. E.G.R. dos Anjos, L.S. Vieira, J. Marini, T.R. Brazil, N.A.S. Gomes, M.C. Rezende, F.R. Passado, Influence of graphene nanoplates and ABS-g-MAH on the thermal, mechanical, and electromagnetic properties of PC/ABS blend. J. Appl. Polym. Sci. (2021). https://doi.org/10.1002/app.51500

    Article  Google Scholar 

  13. N.J.S. Sohi, M. Rahaman, D. Khastgir, Dielectric property and electromagnetic interference shielding effectiveness of ethylene vinyl acetate-based conductive composites: effect of different type of carbon fillers. Polym. Compos. (2011). https://doi.org/10.1002/pc.21133

    Article  Google Scholar 

  14. L.-L. Wang, B.-K. Tay, K.-Y. See, Z. Sun, L.-K. Tan, D. Lua, Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon (2009). https://doi.org/10.1016/j.carbon.2009.03.033

    Article  Google Scholar 

  15. Z. Lou, R. Li, P. Wang, Y. Zhang, B. Chen, C. Huang, C. Wang, H. Han, Y. Li, Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123571

    Article  Google Scholar 

  16. V.A. Silva, M.C. Rezende, Effect of the morphology and structure on the microwave absorbing properties of multiwalled carbon nanotube filled epoxy resin nanocomposites. Mater. Res. (2018). https://doi.org/10.1590/1980-5373-MR-2017-0977

    Article  Google Scholar 

  17. A. Kumar, V. Agarwala, D. Singh, Microwave absorbing behavior of metal dispersed TiO2 nanocomposites. Adv. Powder Technol. (2014). https://doi.org/10.1016/j.apt.2013.07.006

    Article  Google Scholar 

  18. Xu. Zhengbin, H. Hao, Electromagnetic interference shielding effectiveness of aluminum foams with different porosity. J. Alloy. Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.07.188

    Article  Google Scholar 

  19. Y.-Y. Wang, W.-J. Sun, D.-X. Yan, K. Dai, Z.-M. Li, Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon (2021). https://doi.org/10.1016/j.carbon.2020.12.028

    Article  Google Scholar 

  20. B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang, B. Fan, X. Guo, R. Zhang, Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon (2021). https://doi.org/10.1016/j.carbon.2021.01.136

    Article  Google Scholar 

  21. Y.L. Xu, A. Uddin, D. Estevez, Y. Luo, H.X. Peng, F.X. Qin, Lightweight microwire/graphene/silicone rubber composites for efficient electromagnetic interference shielding and low microwave reflectivity. Compos. Sci. Technol. (2020). https://doi.org/10.1016/j.compscitech.2020.108022

    Article  Google Scholar 

  22. C. Wang, J. Li, S. Guo, High-performance electromagnetic wave absorption by designing the multilayer graphene/thermoplastic polyurethane porous composites with gradient foam ratio structure. Composites A (2019). https://doi.org/10.1016/j.compositesa.2019.105522

    Article  Google Scholar 

  23. P.E. Ferrari, M.C. Rezende, Carbono Polimérico: Processamento e Aplicação. Polímeros: Ciência e Tecnologia (1998). https://doi.org/10.1590/S0104-14281998000400005

  24. J.M. Friedrich, C. Ponce-de-Leon, G.W. Reade, F.C. Walsh, Reticulated vitreous carbon as an electrode material. J. Electroanal. Chem. (2004). https://doi.org/10.1016/j.jelechem.2003.07.019

    Article  Google Scholar 

  25. P. Liu, Y. Huang, Synthesis of reduced graphene oxide-conducting polymers-Co3O4 composites and their excellent microwave absorption properties. RSC Adv. (2013). https://doi.org/10.1039/c3ra43073a

    Article  Google Scholar 

  26. H. Wang, N. Li, W. Wang, J. Shi, Z. Xu, L. Liu, Y. Hu, M. Jing, L. Liu, X. Zhang, Bead nano-necklace spheres on 3D carbon nanotube scaffolds for high-performance electromagnetic-interference shielding. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2018.10.221

    Article  Google Scholar 

  27. B. Ribeiro, J.A.R. Corredor, M.L. Costa, E.C. Botelho, M.C. Rezende, Multifunctional characteristics of glass fiber-reinforced epoxy polymer composites with multiwalled carbon nanotube buckypaper interlayer. Polym. Eng. Sci. (2020). https://doi.org/10.1002/pen.25332

    Article  Google Scholar 

  28. R. Pastore, A. Delfini, D. Micheli, A. Vricella, M. Marchetti, F. Santoni, F. Piergentili, Carbon foam electromagnetic mm-wave absorption in reverberation chamber. Carbon (2019). https://doi.org/10.1016/j.carbon.2018.12.026

    Article  Google Scholar 

  29. P. Kuzhir, A. Paddubskava, J. Macutkevic, M. Ltellier, A. Celzard, V. Fierro, T. Kaplas, P.Y. Syirko, Electromagnetics of carbon: nano versus micro. Carbon-Based Nanoelectromagn. (2019). https://doi.org/10.1016/B978-0-08-102393-8.00008-X

    Article  Google Scholar 

  30. D. Bychanok, S. Li, G. Gorokhov, K. Piasotski, D. Meisak, P. Kuzhir, E.A. Burgess, C.P. Gallagher, F.Y. Ogrin, A.P. Hibbins, Fully carbon metasurface: absorbing coating in microwaves. J. Appl. Phys. (2017). https://doi.org/10.1063/1.4982232

    Article  Google Scholar 

  31. N.C.F.L. Medeiros, L.I. Medeiros, B.C.S. Fonseca, J.T. Matsushima, A.F. Sardinha, A.F. Boss, G.F.B. Lenz, Silva, G.A. Amaral-Labat, M.R. Baldan, In WORKSHOP EM ENGENHARIA E TECNOLOGIA AEROESPACIAIS, 11., (2020), São José dos Campos. Espumas de Carbono à Base do Polifenólico Natural (Tanino) como Material Absorvedor de Radiação Eletromagnética: Tecnologias Espaciais. São José dos Campos: Inpe, 2020. 10 p.

  32. M.C. Bertolini, Avaliação da eficiência de blindagem eletromagnética em compósitos de poliuretano termoplástico e aditivos à base de negro de fumo e nanotubo de carbono. (2018). 87 f. Dissertação (Mestrado) - Curso de Pós-Graduação em Ciência e Engenharia de Materiais, Centro Tecnológico, Universidade Federal de Santa Catarina, Florianópolis.

  33. L.S. Montagna, S.S. Oishi, M.F. Diniz, T.L.A. Montanheiro, F.S. Silva, F.R. Passador, M.C. Rezende, Multifunctional green nanostructured composites: preparation and characterization. Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aabf66

    Article  Google Scholar 

  34. M.C.R. Coimbra, T.R. Brazil, G.F.M. Morgado, E.F. Martins, E.G.R. dos Anjos, I.M.C. Oyama, J.S. Rodrigues, V.R. Botaro, L.S. Montagna, M.C. Rezende, Estabelecimento de rota síntese da resina furfurílica em meio ácido visando minimizar a exotermia da reação. Revista Matéria (2022). https://doi.org/10.1590/1517-7076-RMAT-2022-0054

    Article  Google Scholar 

  35. F.S. Dias, T.R. Brazil, L.S. Montagna, M.C. Rezende, Estudo da influência dos parâmetros de tratamento térmico da resina furfurílica nas características morfológicas, estruturais e condutividade elétrica do carbono vítreo reticulado. Revista Matéria (2021). https://doi.org/10.1590/S1517-707620210002.1295

    Article  Google Scholar 

  36. D. Harekrishna, M. Amar, M. Manjusri, Renewable-resource-based green blends from poly(furfuryl alcohol) bioresin and lignin. Macromol. Mater. Eng. (2014). https://doi.org/10.1002/mame.201300221

    Article  Google Scholar 

  37. J. Urbanski, W. Czerwinski, K. Janicka, Handbook of Analysis of Synthetic Polymers and Plastics: Products and Processes (Wiley, New York, 1977)

    Google Scholar 

  38. E.G.R. Anjos, Desenvolvimento de nanocompósitos híbridos de GNP e MWCNT em blendas de PC/ABS para carcaça de componentes eletrônicos. (2021). 207 f. Dissertação - Curso de Engenharia de Materiais, Engenharia e Ciência de Materiais, Universidade Federal de São Paulo, São José dos Campos

  39. B. Ribeito, J.A.R. Corredor, L.F.P. Santos, N.A.S. Gomes, M.C. Rezende, Electrical conductivity and electromagnetic shielding performance of glass fiber-reinforced epoxy composites with multiwalled carbon nanotube buckypaper interlayer. J. Mater. Sci. (2021). https://doi.org/10.1007/s10854-020-04964-6

    Article  Google Scholar 

  40. S.A. Schelkunoff, The electromagnetic theory of coaxial transmission lines and cylindrical shields. Bell Syst. Technol. J. (1934). https://doi.org/10.1002/j.1538-7305.1934.tb00679.x

    Article  Google Scholar 

  41. M.W. Medley Jr., Microwave and RF Circuits: Analysis, Synthesis, and Design, Norwood (Artech House, MA, 1993)

    Google Scholar 

  42. S.S. Pradhan, L. Unnikrishnan, S. Mohanty, S.K. Nayak, Thermally conducting polymer composites with EMI shielding: a review. J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-019-07908-x

    Article  Google Scholar 

  43. F.C. Reis, M.C. Rezende, B. Ribeiro, The influence of the transparent layer thickness on the absorption capacity of epoxy/carbon nanotube buckypaper at X-band. J. Appl. Polym. Sci. (2021). https://doi.org/10.1002/app.51407

    Article  Google Scholar 

  44. A. Bilen, D.D. Hudson, D.A. Eichfeld, C.R. Dennison, L. Agartan, Y. Gogotsi, E.C. Kumbur, Reticulated Carbon Electrodes for Improved Charge Transport in Electrochemical Flow Capacitors: Reticulated Carbon Electrodes (The Electrochemical Society, Philadelphia, 2018). https://doi.org/10.1149/2.0361811jes

    Book  Google Scholar 

  45. P.H.S.L. Coelho, A.R. Morales, Modelos de percolação elétrica aplicados para compósitos poliméricos condutores. Polímeros (2017). https://doi.org/10.1590/0104-1428.2016

    Article  Google Scholar 

  46. D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, Electromagnetic interference shielding polymers and nanocomposites—a review. Polym. Rev. (2019). https://doi.org/10.1080/15583724.2018.1546737

    Article  Google Scholar 

  47. S. Gupta, N.H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon N Y (2019). https://doi.org/10.1016/j.carbon.2019.06.002

    Article  Google Scholar 

  48. A. L. Paula, M. C. Rezende, J. J. Barroso, Modified Nicolson-Ross-Weir (NRW) method to retrieve the constitutive parameters of low-loss materials, in 2011 Sbmo/IEEE Mtt-S International Microwave and Optoelectronics Conference (2011), https://doi.org/10.1109/imoc.2011.6169293

  49. V.A. Silva, M.C. Rezende, S-parameters, electrical permittivity, and absorbing energy measurements of carbon nanotubes-based composites in X-band. J. Appl. Polym. Sci. (2020). https://doi.org/10.1002/app.49843

    Article  Google Scholar 

  50. D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon N Y (2001). https://doi.org/10.1016/S00086223(00)00184-6

    Article  Google Scholar 

  51. Pinto, S.S. Síntese da poli(o-metoxianilina) in situ na presença de negro de fumo e sua utilização como material absorvedor de micro-ondas. (2009). Dissertação de Mestrado, Instituto Tecnológico de Aeronáutica (ITA) – DCTA, São José dos Campos - SP.

  52. B. Ribeiro, N.A.S. Gomes, M.C. Rezende, Lightweight multi-walled carbon nanotube buckypaper/glass fiber–epoxy composites for strong electromagnetic interference shielding and efficient microwave absorption. J. Mater. Sci. 32, 14494–14508 (2021). https://doi.org/10.1007/s10854-021-06007-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Brazilian Funding Institutions CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Project: 305123/2018-1) and FAPESP (Fundação de Apoio à Pesquisa do Estado de São Paulo, Project: 2018/09531-2) for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

FSD, LSM and MCR contributed to conceptualization. FSD, LSM and BR performed data curation, investigation and writing—original draft. Newton Adriano Santos Gomes carried out formal analysis. MCR and MRB contributed to funding acquisition. FSD, BR, NASG and LSM provided methodology. MCR was involved in project administration and supervision. MCR and MRB provided resources. FSD and LSM performed validation and visualization. FSD, LSM, BR and MCR performed writing—review and editing.

Corresponding author

Correspondence to Larissa Stieven Montagna.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest for the research, authorship, and/or publication of this article, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Dias, F., Ribeiro, B., Baldan, M.R. et al. Electromagnetic shielding in the X-band of composites based on 3D carbon structures using reticulated vitreous carbon and epoxy resin. J Mater Sci: Mater Electron 34, 236 (2023). https://doi.org/10.1007/s10854-022-09576-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09576-w

Navigation