Skip to main content
Log in

Ultra-sensitive TEA sensor based on bulk-like Zinc oxide nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, a highly sensitive bulk-like nanostructure zinc oxide (ZnO) gas sensor is prepared using a two-step hydrothermal method. The physical phase, crystallinity, morphology and compound synthesis of the gas-touchy material are portrayed and the results show that it has a bulk-like design made out of wurtzite hexagonal zinc oxide chips. Gas detection focused on the bulk ZnO revealed extraordinary sensitivity (response value of 151 for 200 ppm triethylamine at 170 °C), response/recovery time were 31/53 s and detecting as low as 0.053 ppm for triethylamine. Indeed, even at room temperature, the sensor answers with a reaction of 3.2. The gas sensing mechanism of the sensor to triethylamine is additionally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used during the current work are available from the corresponding author on reasonable request.

References

  1. J.J. Liu, L.Y. Zhang, J.J. Fan et al., Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres. Sens. Actuators B Chem. 331, 129425–129436 (2021)

    Article  CAS  Google Scholar 

  2. H. Xu, J. Ju, W. Li et al., Superior triethylamine-sensing properties based on TiO2/SnO2 n–n heterojunction nanosheets directly grown on ceramic tubes. Sens. Actuators B Chem. 228, 634–642 (2016)

    Article  CAS  Google Scholar 

  3. X. Li, Y. Wang, W. Tian et al., Graphitic carbon nitride nanosheets decorated flower-like NiO composites for high-performance triethylamine detection. ACS Omega 4, 9645–9653 (2019)

    Article  CAS  Google Scholar 

  4. X.L. Yang, Q. Yu, S.F. Zhang et al., Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4 composites. Sens. Actuators B Chem. 266, 213–220 (2018)

    Article  CAS  Google Scholar 

  5. S.R. Wang, Y.Q. Zhao, J. Huang et al., Preparation and CO gas-sensing behavior of Au-doped SnO2 sensors. Vacuum 81, 394–397 (2006)

    Article  CAS  Google Scholar 

  6. S. Park, S. An, Y. Mun et al., UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature. ACS Appl. Mater. Interfaces 5, 4285–4292 (2013)

    Article  CAS  Google Scholar 

  7. Y. Sun, Z. Dong, D. Zhang et al., The fabrication and triethylamine sensing performance of In-MIL-68derived In2O3 with porous lacunaris structure. Sens. Actuators B Chem. 326, 128791 (2021)

    Article  CAS  Google Scholar 

  8. Z.R. Ma, P. Song, Z.X. Yang et al., Trimethylamine detection of 3D rGO/ mesoporous In2O3 nanocomposites at room temperature. Appl. Surf. Sci. 465, 625–634 (2019)

    Article  CAS  Google Scholar 

  9. Q. Ma, Y. Fang, Y. Liu et al., Facile synthesis of ZnO morphological evolution with tunable growth habits: achieving superior gas-sensing properties of hemispherical ZnO/Au heterostructures for triethylamine. Phys. E 106, 180–186 (2019)

    Article  CAS  Google Scholar 

  10. Z.L. Tang, Y. Zhang, X.C. Deng et al., The H2 sensing properties of facets-dependent Pd nanoparticles-supported ZnO nanorods. Dalton Trans. 47, 15331–15337 (2018)

    Article  CAS  Google Scholar 

  11. R. Yoo, A.T. Güntner, Y.J. Park et al., Sensing of acetone by Al-doped ZnO. Sens. Actuators B Chem. 283, 107–115 (2019)

    Article  CAS  Google Scholar 

  12. S.H. Wei, Y. Xing, Y. Li et al., Preparation and gas sensing properties of flower-like WO3 hierarchical architecture. Vacuum 129, 13–19 (2016)

    Article  CAS  Google Scholar 

  13. C. Zhai, M. Zhu, L. Jiang et al., Fast triethylamine gas sensing response properties of nanosheets assembled WO3 hallow microspheres. Appl. Surf. Sci. 463, 1078–1084 (2019)

    Article  CAS  Google Scholar 

  14. L. Siebert, O. Lupan, M. Mirabelli et al., 3D-Printed chemiresistive sensor array on nanowire CuO/Cu2O/Cu heterojunction nets. ACS Appl. Mater. Interfaces 11, 25508–25515 (2019)

    Article  CAS  Google Scholar 

  15. P. Patil, U.T. Nakate, Y.T. Nakate et al., Acetaldehyde sensing properties using ultrafine CuO nanoparticles. Mater. Sci. Semicond. Process. 101, 76–81 (2019)

    Article  CAS  Google Scholar 

  16. M. Akbari-Saatlu, M. Procek, C. Mattsson et al., Silicon nanowires for gas sensing: a review. Nanomaterials 10, 2215 (2020)

    Article  CAS  Google Scholar 

  17. I.S. Hwang, S.J. Kim, J.K. Choi et al., Synthesis and gas sensing characteristics of highly crystalline ZnO-SnO2 core–shell nanowires. Sens. Actuators B Chem. 148, 595–600 (2010)

    Article  CAS  Google Scholar 

  18. K.W. Kim, P.S. Cho, S.J. Kim et al., The selective detection of C2H5OH using SnO2-ZnO thin film gas sensors prepared by combinatorial solution deposition. Sens. Actuators B Chem. 123, 318–324 (2007)

    Article  CAS  Google Scholar 

  19. Z. Qin, Y.H. Huang, J.J. Qi et al., Facile synthesis and photoelectrochemical performance of the bush-like ZnO nanosheets film. Solid State Sci. 14, 155–158 (2012)

    Article  CAS  Google Scholar 

  20. L.N. Cai, H.R. Li, H. Zhang et al., Enhanced performance of the tangerines-like CuO-based gas sensor using ZnO nanowire arrays. Mater. Sci. Semicond. Process. 118, 105196 (2020)

    Article  CAS  Google Scholar 

  21. B. Zhang, Y.W. Li, N. Luo et al., TiO2/ZnCo2O4 porous nanorods: synthesis and temperature-dependent dual selectivity for sensing HCHO and TEA. Sens Actuators B Chem. 321, 128461 (2020)

    Article  CAS  Google Scholar 

  22. X.L. Xu, S.Y. Wang, W.W. Liu et al., An excellent triethylamine (TEA) sensor based on unique hierarchical MoS2/ZnO composites composed of porous microspheres and nanosheets. Sens Actuators B Chem. 333, 129616 (2021)

    Article  CAS  Google Scholar 

  23. W. Li, H. Xu, H. Yu et al., Different morphologies of ZnO and their triethylamine sensing properties. J. Alloy. Compd. 706, 461–469 (2017)

    Article  CAS  Google Scholar 

  24. S. Nundy, T.Y. Eom, J.G. Kang et al., Flower-shaped ZnO nanomaterials for low-temperature operations in NOX gas sensors. Ceram. Int. 46, 5706–5714 (2020)

    Article  CAS  Google Scholar 

  25. Z.Y. Yu, J. Gao, L.X. Xu et al., Fabrication of lettuce-like ZnO gas sensor with enhanced H2S gas sensitivity. Crystals 145, 1–9 (2020)

    Google Scholar 

  26. L.M. Song, Y. Li, S.C. Li et al., Porous ZnO microflowers with ultrahigh sensitive and selective properties to ethanol. J. Mater. Sci. Mater. Electron. 706, 461–469 (2016)

    Google Scholar 

  27. P.P. Das, A. Roy, M. Tathavadekar et al., Photovoltaic and photocatalytic performance of electrospun Zn2SnO4 hollow fibers. Appl. Catal. B 203, 692–703 (2017)

    Article  CAS  Google Scholar 

  28. Y.Y. Xu, X. Tian, P. Liu et al., In2O3 nanoplates with different crystallinity and porosity: controllable synthesis and gas-sensing properties investigation. J. Alloy. Compd. 787, 1063–1073 (2019)

    Article  CAS  Google Scholar 

  29. J. Shu, Z.L. Qiu, S.Z. Lv et al., Cu2+-doped SnO2 nanograin/polypyrrole nanospheres with synergic enhanced properties for ultrasensitive room-temperature H2S gas sensing. Anal. Chem. 89, 11135–11142 (2017)

    Article  CAS  Google Scholar 

  30. R.J. Zeng, Z.B. Luo, L.J. Zhang et al., Platinum nanozyme-catalyzed gas generation for pressure-based bioassay using polyaniline nanowires-functionalized graphene oxide framework. Anal. Chem. 90, 12299–12306 (2018)

    Article  CAS  Google Scholar 

  31. Q. Hu, J.Q. He, J.Y. Chang et al., Needle-shaped WO3 nanorods for triethylamine gas sensing. ACS Appl. Nano Mater. 3, 9646–9654 (2020)

    Article  Google Scholar 

  32. H. Wang, H.W. Zhao, S.R. Li et al., Fast triethylamine gas sensing performance based on In2O3 nanocuboids. Proc. Inst. Mech. Eng. L (2021). https://doi.org/10.1177/14644207211022768

    Article  Google Scholar 

  33. Y.W. Li, N. Luo, G. Sun et al., Synthesis of porous nanosheets-assembled ZnO/ZnCo2O4 hierarchical structure for TEA detection. Sens. Actuators B Chem. 287, 199–208 (2019)

    Article  CAS  Google Scholar 

  34. S. Li, Y.C. Zhang, L. Han et al., Hierarchical kiwifruit-like ZnO/ZnFe2O4 heterostructure for high-sensitive triethylamine gaseous sensor. Sens. Actuators B Chem. 344, 130251 (2021)

    Article  CAS  Google Scholar 

  35. J. Yang, J.Q. Liu, Y. Xu et al., Enhanced selective acetone-sensing performance of hierarchical hollow SnO2/α-Fe2O3 microcubes. J. Mater. Chem. C Mater. Opt. Electron. Devices 7, 11984–11990 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 62074083) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. SJCX21_0928).

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation: XL; writing—review and editing: YS; Formal analysis: MW; Validation: HW; Methodology: XS; Funding acquisition: XFS. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Xue Li or Minghao Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Shi, Y., Wang, M. et al. Ultra-sensitive TEA sensor based on bulk-like Zinc oxide nanostructures. J Mater Sci: Mater Electron 34, 140 (2023). https://doi.org/10.1007/s10854-022-09572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09572-0

Navigation