Skip to main content
Log in

Cubic-shaped cobalt nanoparticles for electrochemical detection of dopamine

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here we report the electrochemical sensing of dopamine using cubic-shaped cobalt nanoparticles prepared by the thermal decomposition of a cobalt carbonyl precursor in an organic medium. Microscopic (TEM and FE-SEM) and spectroscopic (EDS) analyses indicated the formation of cubic-shaped nanoparticles with an almost uniform size of ~ 20 nm. The ultrasmall size of the nanoparticle provides more surface atoms than a larger one and thereby possesses an improved electrochemical activity. Electrochemical measurements showed an excellent detection of dopamine at the lowest concentration of 1 µM by the nanoparticles. A linear relationship between the response and dopamine concentration within 1–18 µM and sensitivity of 0.013 µA/µM was also observed. The nanoparticles also showed almost no response toward interfering molecules usually present in body fluids, such as uric acid, glucose, and fructose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungström, H.-E. Nilsson, W. Xiong, B. Xu, Y. Li, H.H. Radamson, Nanomaterials 10(11), 2215 (2020)

    Article  CAS  Google Scholar 

  2. Z. Chen, S. Wang, W. Liu, X. Gao, D. Gao, M. Wang, S. Wang, Appl. Catal. A 525, 94–102 (2016)

    Article  CAS  Google Scholar 

  3. K. Deori, S.K. Ujjain, R.K. Sharma, S. Deka, ACS Appl. Mater. Interfaces 5(21), 10665–10672 (2013)

    Article  CAS  Google Scholar 

  4. C. Dong, C. Lian, S. Hu, Z. Deng, J. Gong, M. Li, H. Liu, M. Xing, J. Zhang, Nat. Commun. 9(1), 1252 (2018)

    Article  Google Scholar 

  5. P.L. dos Santos, V. Katic, K.C. Toledo, J.A. Bonacin, Sens. Actuators B 255, 2437–2447 (2018)

    Article  Google Scholar 

  6. C.P. Gräf, R. Birringer, A. Michels, Phys. Rev. B 73(21), 212401 (2006)

    Article  Google Scholar 

  7. S. Guo, S. Zhang, L. Wu, S. Sun, Angew. Chem. Int. Ed. 51(47), 11770–11773 (2012)

    Article  CAS  Google Scholar 

  8. F. Hao, Z. Zhang, L. Yin, ACS Appl. Mater. Interfaces 5(17), 8337–8344 (2013)

    Article  CAS  Google Scholar 

  9. X. He, X. Song, W. Qiao, Z. Li, X. Zhang, S. Yan, W. Zhong, Y. Du, J. Phys. Chem. C 119(17), 9550–9559 (2015)

    Article  CAS  Google Scholar 

  10. Z. Ji, Y. Wang, J. Yang, X. Shen, Q. Yu, L. Kong, H. Zhou, RSC Adv. 6(109), 107709–107716 (2016)

    Article  CAS  Google Scholar 

  11. H. Kang, S. Rho, W.R. Stiles, S. Hu, Y. Baek, D.W. Hwang, S. Kashiwagi, M.S. Kim, H.S. Choi, Adv. Healthc. Mater. 9(1), 1901223 (2020)

    Article  CAS  Google Scholar 

  12. B. Kaur, T. Pandiyan, B. Satpati, R. Srivastava, Colloids Surf., B 111, 97–106 (2013)

    Article  CAS  Google Scholar 

  13. D.-S. Kim, E.-S. Kang, S. Baek, S.-S. Choo, Y.-H. Chung, D. Lee, J. Min, T.-H. Kim, Sci. Rep. 8(1), 1–10 (2018)

    Google Scholar 

  14. S. Kiran Kumar, M. Prashanth, H. Muralidhara, K. Yogesh Kumar, G. Mamatha, Surf. Eng. Appl. Electrochem. 52(5), 469–474 (2016)

    Article  Google Scholar 

  15. S.R.K. Kumar, G.P. Mamatha, H.B. Muralidhara, K.Y. Kumar, M.K. Prashanth, Anal. Bioanal. Electrochem. 7, 175 (2015)

    CAS  Google Scholar 

  16. Q. Li, X. Hu, Q. Yang, Z. Yan, L. Kang, Z. Lei, Z. Yang, Z. Liu, Electrochim. Acta 119, 184–191 (2014)

    Article  CAS  Google Scholar 

  17. D. Li, K. Ao, Q. Wang, P. Lv, Q. Wei, Molecules 21(5), 618 (2016)

    Article  Google Scholar 

  18. Z. Li, R. Liu, C. Tang, Z. Wang, X. Chen, Y. Jiang, C. Wang, Y. Yuan, W. Wang, D. Wang, S. Chen, X. Zhang, Q. Zhang, J.. Jiang, Small 16(15), 1902860 (2020)

    Article  CAS  Google Scholar 

  19. K.-C. Lin, T.-H. Tsai, S.-M. Chen, Biosens. Bioelectron. 26(2), 608–614 (2010)

    Article  CAS  Google Scholar 

  20. J. Liu, J. Ke, Y. Li, B. Liu, L. Wang, H. Xiao, S. Wang, Appl. Catal. B 236, 396–403 (2018)

    Article  CAS  Google Scholar 

  21. H. Ma, P. Gao, P. Qian, Y. Su, J. Phys. Chem. C 124(5), 3403–3409 (2020)

    Article  CAS  Google Scholar 

  22. K. Maleski, C.E. Ren, M.-Q. Zhao, B. Anasori, Y. Gogotsi, ACS Appl. Mater. Interfaces 10(29), 24491–24498 (2018)

    Article  CAS  Google Scholar 

  23. T. Matsumoto, K. Takahashi, K. Kitagishi, K. Shinoda, J.L. Cuya Huaman, J.-Y. Piquemal, B. Jeyadevan, New J. Chem. 39(6), 5008–5018 (2015)

    Article  CAS  Google Scholar 

  24. G. Melaet, A.E. Lindeman, G.A. Somorjai, Top. Catal. 57(6), 500–507 (2014)

    Article  CAS  Google Scholar 

  25. A. Mohanty, N. Garg, R. Jin, Angew. Chem. Int. Ed. 49(29), 4962–4966 (2010)

    Article  CAS  Google Scholar 

  26. A. Numan, M.M. Shahid, F.S. Omar, K. Ramesh, S. Ramesh, Sens. Actuators B 238, 1043–1051 (2017)

    Article  CAS  Google Scholar 

  27. M. Oezaslan, M. Heggen, P. Strasser, J. Am. Chem. Soc. 134(1), 514–524 (2012)

    Article  CAS  Google Scholar 

  28. S. Priyatharshni, A. Tamilselvan, C. Viswanathan, N. Ponpandian, J. Electrochem. Soc. 164(4), B152 (2017)

    Article  CAS  Google Scholar 

  29. V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Science 291(5511), 2115–2117 (2001)

    Article  CAS  Google Scholar 

  30. V.F. Puntes, K. Krishnan, A.P. Alivisatos, Top. Catal. 19(2), 145–148 (2002)

    Article  CAS  Google Scholar 

  31. M.A. Riaz, Z. Yuan, A. Mahmood, F. Liu, X. Sui, J. Chen, Q. Huang, X. Liao, L. Wei, Y. Chen, Sens. Actuators B 319, 128243 (2020)

    Article  CAS  Google Scholar 

  32. R.U. Ribeiro, J.W.C. Liberatori, H. Winnishofer, J.M.C. Bueno, D. Zanchet, Appl. Catal. B 91(3), 670–678 (2009)

    Article  CAS  Google Scholar 

  33. S. Sadasivan, R.M. Bellabarba, R.P. Tooze, Nanoscale 5(22), 11139–11146 (2013)

    Article  CAS  Google Scholar 

  34. M. Scariot, D.O. Silva, J.D. Scholten, G. Machado, S.R. Teixeira, M.A. Novak, G. Ebeling, J. Dupont, Angew. Chem. Int. Ed. 47(47), 9075–9078 (2008)

    Article  CAS  Google Scholar 

  35. Y. Song, Z. He, H. Zhu, H. Hou, L. Wang, Electrochim. Acta 58, 757–763 (2011)

    Article  CAS  Google Scholar 

  36. P. Suchomel, L. Kvitek, R. Prucek, A. Panacek, A. Halder, S. Vajda, R. Zboril, Sci. Rep. 8(1), 4589 (2018)

    Article  Google Scholar 

  37. P. van Helden, I.M. Ciobîcă, R.L.J. Coetzer, Catal. Today 261, 48–59 (2016)

    Article  Google Scholar 

  38. F. Waag, B. Gökce, C. Kalapu, G. Bendt, S. Salamon, J. Landers, U. Hagemann, M. Heidelmann, S. Schulz, H. Wende, N. Hartmann, M. Behrens, S. Barcikowski, Sci. Rep. 7(1), 13161 (2017)

    Article  Google Scholar 

  39. Z. Wei, J. Wang, S. Mao, D. Su, H. Jin, Y. Wang, F. Xu, H. Li, Y. Wang, ACS Catal. 5(8), 4783–4789 (2015)

    Article  CAS  Google Scholar 

  40. X. Xie, W. Shen, Nanoscale 1(1), 50–60 (2009)

    Article  CAS  Google Scholar 

  41. L. Yang, D. He, Q. Cai, C.A. Grimes, J. Phys. Chem. C 111(23), 8214–8217 (2007)

    Article  CAS  Google Scholar 

  42. M.V. Zdorovets, A.L. Kozlovskiy, D.I. Shlimas, D.B. Borgekov, J. Mater. Sci.: Mater. Electron. 32(12), 16694–16705 (2021)

    CAS  Google Scholar 

  43. X. Zhang, Y.-C. Zhang, L.-X. Ma, Sens. Actuators B 227, 488–496 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Kunal gratefully acknowledges the support from GGSIPU, New Delhi in the form of a research fellowship. Anindya Datta is thankful to the DST for FIST Grant (SR/FST/PSI-167/2011(C)) at GGSIPU. Tapan Sarkar acknowledges financial assistance from the Scientific and Engineering Research Board (SERB) through Grant EEQ/2018/000 715.

Funding

Prof. Datta is grateful to the Grant of Department of Science & Technology (DST) for the FIST Grant (SR/FST/PSI-167/2011(C)). Tapan Sarkar is grateful to the Scientific and Engineering Research Board (SERB) for the Grant EEQ/2018/000 715.

Author information

Authors and Affiliations

Authors

Contributions

K and R were responsible for the investigation, data acquisition, and writing of the original draft. TS and AD were responsible for conceptualization, funding acquisition, writing, reviewing, & editing of the manuscript and supervision.

Corresponding authors

Correspondence to Anindya Datta or Tapan Sarkar.

Ethics declarations

Conflict of interest

Authors of the manuscript declare no financial conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunal, Rohit, Datta, A. et al. Cubic-shaped cobalt nanoparticles for electrochemical detection of dopamine. J Mater Sci: Mater Electron 34, 210 (2023). https://doi.org/10.1007/s10854-022-09568-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09568-w

Navigation