Skip to main content
Log in

Upright pyramids vs. inverted pyramids surface textures: a comparative investigation on the electrical properties of PERC solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Surface texturing is one of the key steps in the manufacturing process of mono-crystalline silicon solar cells. The mainstream texturing process applied currently is based on alkaline texturing that produces upright pyramids (UPs)-structured surface, while the inverted pyramids (IPs) structure has also received growing interest due to the lower reflectance. Here, we examine the influence of these two different structures on the surface reflectance, phosphorus (P) diffusion profile, surface passivation performance and quantum efficiency of the solar cells. The results show that the IPs structure is advantageous over UPs structure in front side reflectance, P captured ability, back side passivation effect after polishing, and silver-silicon contact resistivity. However, its poor surface passivation performance on the front side limits the efficiency of the as-fabricated solar cells as compared with the UPs-structured wafers. Therefore, improving the front side surface passivation of the wafers textured with IPs structure could be a key factor that determines the feasibility of commercialization of the related texturing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data of current findings will be made available from the corresponding author on reasonable request.

References

  1. S. Kashyap, J. Madan, R. Pandey, Sustain. Energy Fuels 13, 3249–3262 (2022). https://doi.org/10.1039/d2se00434h

    Article  CAS  Google Scholar 

  2. C. Liu, J. Xu, Z. Zhang, Z. Liu, X. Yuan, H. Li, J. Mater. Sci. Mater. Electron. 32, 23465–23471 (2021). https://doi.org/10.1007/s10854-021-06834-1

    Article  CAS  Google Scholar 

  3. H. Liu, L. Zhao, H. Diao, W. Wang, Mater. Sci. Semicond. Process. 101, 149–155 (2019). https://doi.org/10.1016/j.mssp.2019.06.003

    Article  CAS  Google Scholar 

  4. P. Zhang, H. Sun, K. Tao, R. Jia, G. Su, X. Dai, Z. Jin, X. Liu, J. Mater. Sci. Mater. Electron. 30, 8667–8675 (2019). https://doi.org/10.1007/s10854-019-01189-0

    Article  CAS  Google Scholar 

  5. K. Chen, J. Zha, F. Hu, X. Ye, S. Zou, V. Vähänissi, J.M. Pearce, H. Savin, X. Su, Sol. Energy Mater. Sol. Cells 191, 1–8 (2019). https://doi.org/10.1016/j.solmat.2018.10.015

    Article  CAS  Google Scholar 

  6. U. Gangopadhyay, K.H. Kim, S.K. Dhungel, U. Manna, P.K. Basu, M. Banerjee, H. Saha, J. Yi, Sol. Energy Mater. Sol. Cells 90, 3557–3567 (2006). https://doi.org/10.1016/j.solmat.2006.06.044

    Article  CAS  Google Scholar 

  7. J. Yoo, K.M. Han, J.S. Cho, Vacuum 128, 118–122 (2016). https://doi.org/10.1016/j.vacuum.2016.03.023

    Article  CAS  Google Scholar 

  8. M. Ju, K. Mallem, S. Dutta, N. Balaji, D. Oh, E.C. Cho, Y.H. Cho, Y. Kim, J. Yi, Mater. Sci. Semicond. Process 85, 68–75 (2018). https://doi.org/10.1016/j.mssp.2018.05.039

    Article  CAS  Google Scholar 

  9. J. Wu, Y. Liu, W. Chen, Y. Zhao, Q. Chen, H. Tang, Y. Wang, X. Du, Appl. Surf. Sci. 506, 144778 (2020). https://doi.org/10.1016/j.apsusc.2019.144778

    Article  CAS  Google Scholar 

  10. J. Zhao, A. Wang, M.A. Green, Sol. Energy Mater. Sol. Cells 32, 89–94 (1994). https://doi.org/10.1016/0927-0248(94)90258-5

    Article  CAS  Google Scholar 

  11. J. Zhao, A. Wang, P. Altermatt, M.A. Green, Appl. Phys. Lett. 66, 3636 (1995). https://doi.org/10.1063/1.114124

    Article  CAS  Google Scholar 

  12. J. Zhao, A. Wang, M.A. Green, Prog. Photovoltaics Res. Appl. 7, 471–474 (1999)

    Article  CAS  Google Scholar 

  13. Q. Wang, P. Yao, Y. Li, L. Jiang, J. Xu, S. Liang, D. Chun, W. He, C. Huang, H. Zhu, H. Liu, Opt. Laser Technol. 157, 108647 (2023). https://doi.org/10.1016/j.optlastec.2022.108647

    Article  CAS  Google Scholar 

  14. B. Yang, M. Lee, Microelectron. Eng. 130, 52–56 (2014). https://doi.org/10.1016/j.mee.2014.09.016

    Article  CAS  Google Scholar 

  15. S. Sivasubramaniam, M.M. Alkaisi, Microelectron. Eng. 119, 146–150 (2014). https://doi.org/10.1016/j.mee.2014.04.004

    Article  CAS  Google Scholar 

  16. B. Quan, Z. Yao, W. Sun, Z. Liu, X. Xia, C. Gu, J. Li, Microelectron. Eng. 163, 110–114 (2016). https://doi.org/10.1016/j.mee.2016.06.016

    Article  CAS  Google Scholar 

  17. Y. Zhao, Y. Liu, W. Chen, J. Wu, Q. Chen, H. Tang, Y. Wang, X. Du, Sol. Energy 201, 461–468 (2020). https://doi.org/10.1016/j.solener.2020.03.013

    Article  CAS  Google Scholar 

  18. W. Chen, Y. Liu, L. Yang, J. Wu, Q. Chen, Y. Zhao, Y. Wang, X. Du, Sci. Rep. 8, 2–9 (2018). https://doi.org/10.1038/s41598-018-21877-x

    Article  CAS  Google Scholar 

  19. K. Kumar, K.K.C. Lee, P.R. Herman, J. Nogami, N.P. Kherani, Appl. Phys. Lett. 101, 222106 (2012). https://doi.org/10.1063/1.4768689

    Article  CAS  Google Scholar 

  20. H.P. Wang, A.C. Li, T.Y. Lin, J.H. He, Nano Energy 23, 1–6 (2016). https://doi.org/10.1016/j.nanoen.2016.02.034

    Article  CAS  Google Scholar 

  21. B. Yang, M. Lee, Opt. Laser Technol. 63, 120–124 (2014). https://doi.org/10.1016/j.optlastec.2014.04.009

    Article  CAS  Google Scholar 

  22. Y. Wang, L. Yang, Y. Liu, Z. Mei, W. Chen, J. Li, H. Liang, A. Kuznetsov, X. Du, Sci. Rep. 5, 1–6 (2015). https://doi.org/10.1038/srep10843

    Article  CAS  Google Scholar 

  23. L. Yang, Y. Liu, Y. Wang, W. Chen, Q. Chen, J. Wu, A. Kuznetsov, X. Du, Sol. Energy Mater. Sol. Cells 166, 121–126 (2017). https://doi.org/10.1016/j.solmat.2017.03.017

    Article  CAS  Google Scholar 

  24. W. Chen, Y. Liu, J. Wu, Q. Chen, Y. Zhao, Y. Wang, X. Du, A.C.S. Appl, Mater. Interfaces 11, 10052–10058 (2019). https://doi.org/10.1021/acsami.9b00724

    Article  CAS  Google Scholar 

  25. K. Gao, Y. Liu, Y. Fan, L. Shi, Y. Zhuang, Y. Cui, S. Yuan, Y. Wan, W. Shen, Z. Huang, Nanoscale Res. Lett. 15, 174 (2020). https://doi.org/10.1186/s11671-020-03404-y

    Article  CAS  Google Scholar 

  26. K. Gao, Y. Liu, H. Cheng, S. Zhong, R. Tong, X. Kong, X. Song, Z. Huang, ACS Omega 6, 32925–32929 (2021). https://doi.org/10.1021/acsomega.1c04972

    Article  CAS  Google Scholar 

  27. Z.G. Huang, K. Gao, X.G. Wang, C. Xu, X.M. Song, L.X. Shi, Y. Zhang, B. Hoex, W.Z. Shen, Sol. Energy 188, 300–304 (2019). https://doi.org/10.1016/j.solener.2019.06.015

    Article  CAS  Google Scholar 

  28. S.D. Wang, S.Y. Chen, S.P. Hsu, C.Y. Liao, W.Y. Hsu, Appl. Surf. Sci. 578, 152050 (2022). https://doi.org/10.1016/j.apsusc.2021.152050

    Article  CAS  Google Scholar 

  29. D. Zhang, L. Wang, R. Jia, K. Tao, S. Jiang, H. Ge, B. Wang, Z. Gao, X. Li, M. Li, Z. Jin, Mater. Sci. Semicond. Process. 138, 106281 (2022). https://doi.org/10.1016/j.mssp.2021.106281

    Article  CAS  Google Scholar 

  30. D. Zhang, S. Jiang, K. Tao, R. Jia, H. Ge, X. Li, B. Wang, M. Li, Z. Ji, Z. Gao, Z. Jin, Sol. Energy Mater. Sol. Cells 230, 111200 (2021). https://doi.org/10.1016/j.solmat.2021.111200

    Article  CAS  Google Scholar 

  31. P. Wang, S. Xiao, R. Jia, H. Sun, X. Dai, G. Su, K. Tao, Sol. Energy 169, 153–158 (2018). https://doi.org/10.1016/j.solener.2018.04.049

    Article  CAS  Google Scholar 

  32. D. Suh, Curr. Appl. Phys. 18, 178–182 (2018). https://doi.org/10.1016/j.cap.2017.11.024

    Article  Google Scholar 

  33. R. Tong, W. Zhang, X. Ke, D. Liu, Z. Zhang, Mater. Sci. Semicond. Process 126, 105662 (2021). https://doi.org/10.1016/j.mssp.2021.105662

    Article  CAS  Google Scholar 

  34. M. Cui, C. Jin, Y. Yang, X. Wu, L. Zhuge, Optik 127, 11230–11234 (2016). https://doi.org/10.1016/j.ijleo.2016.08.120

    Article  CAS  Google Scholar 

  35. A. Safiei, H. Windgassen, K. Wolter, H. Kurz, Energy Procedia 27, 432–437 (2012). https://doi.org/10.1016/j.egypro.2012.07.089

    Article  CAS  Google Scholar 

  36. X. Dai, R. Jia, G. Su, H. Sun, K. Tao, C. Zhang, P. Zhang, Z. Jin, X. Liu, Sol. Energy Mater. Sol. Cells 186, 42–49 (2018). https://doi.org/10.1016/j.solmat.2018.06.011

    Article  CAS  Google Scholar 

  37. S.W. Glunz, F. Feldmann, Sol. Energy Mater. Sol. Cells 185, 260–269 (2018). https://doi.org/10.1016/j.solmat.2018.04.029

    Article  CAS  Google Scholar 

  38. S.H. Lee, M.F. Bhopal, D.W. Lee, S.H. Lee, Mater. Sci. Semicond. Process. 79, 66–73 (2018). https://doi.org/10.1016/j.mssp.2018.01.019

    Article  CAS  Google Scholar 

  39. H.B. Tang, S. Ma, Y. Lv, Z.P. Li, W.Z. Shen, Sol. Energy Mater. Sol. Cells 216, 110712 (2020). https://doi.org/10.1016/j.solmat.2020.110712

    Article  CAS  Google Scholar 

  40. M. Li, N. Iqbal, Z. Yang, X. Lin, N.K. Pannaci, C. Avalos, T. Shaw, T. Jurca, K. Davis, IEEE. J. Photovolt. 10, 1277–1282 (2020). https://doi.org/10.1109/JPHOTOV.2020.3003792

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Research and Development Program of Anhui Province of China (No. 2022l07020011).

Funding

Anhui Provincial Key Research and Development Plan, 2022l07020011, Dongming Liu

Author information

Authors and Affiliations

Authors

Contributions

RT contributed to the conception, investigation, data curation and writing. CL involved in the data analysis and revision. SM and SZ contributed to the sample preparation, data acquisition and analysis. XL involved in the methodology and revision. DL supervised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dongming Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, R., Li, C., Ma, S. et al. Upright pyramids vs. inverted pyramids surface textures: a comparative investigation on the electrical properties of PERC solar cells. J Mater Sci: Mater Electron 34, 54 (2023). https://doi.org/10.1007/s10854-022-09567-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09567-x

Navigation