Skip to main content
Log in

Highly sensitive and fast response acetone gas sensor based on Co3O4–ZnO heterojunction assembled by porous nanoflowers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Acetone is an important raw material for organic synthesis in modern industrial production. However, working in an environment with large acetone concentrations can cause explosive accidents in addition to irreversible damage to the central nervous system. Here, we fabricated a highly sensitive and fast response sensor based on p–n Co3O4–ZnO heterojunctions assembled by porous nanoflowers towards acetone gas through an environmentally friendly hydrothermal method. The 1% Co3O4–ZnO heterojunction has a band gap of 3.1767 eV and is narrower than ZnO with a band gap of 3.209 eV, which promotes electron transition and thus enhances gas-sensitive performance. In addition, the catalysis of Co3O4 reduces the activation energy of the reaction. According to the above advantages, the 1% Co3O4–ZnO heterojunction sensor displays a response as high as 615.5 toward 100 ppm of acetone and is about 16 times higher than that of the ZnO-based sensor. Moreover, long-term stability and good selectivity for various volatile organic compounds (VOCs) are achieved as well as the optimal operating temperature drops from 373 to 273 °C compared to ZnO. The scientific findings of this work will provide value for fabricating reliable acetone gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data available on request from the authors. The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: a review. Nano Energy. 79, 105369 (2021)

    Article  CAS  Google Scholar 

  2. L. Cheng, S.Y. Ma, X.B. Li, J. Luo, W.Q. Li, F.M. Li, Y.Z. Mao, T.T. Wang, Y.F. Li, Highly sensitive acetone sensors based on Y-doped SnO2 prismatic hollow nanofibers synthesized by electrospinning. Sens. Actuators B Chem. 200, 181–190 (2014)

    Article  CAS  Google Scholar 

  3. P.R. Galassetti, B. Novak, D. Nemet, C. Rose-Gottron, D.M. Cooper, S. Meinardi, R. Newcomb, F. Zaldivar, D.R. Blake, Breath ethanol and acetone as indicators of serum glucose levels: an initial report. Diabetes Technol. Ther. 7, 115–123 (2005)

    Article  CAS  Google Scholar 

  4. Z. Cai, S. Park, Synthesis of pd nanoparticle-decorated SnO2 nanowires and determination of the optimum quantity of pd nanoparticles for highly sensitive and selective hydrogen gas sensor. Sens. Actuators B Chem. 322, 128651 (2020)

    Article  CAS  Google Scholar 

  5. J. Liu, L. Zhang, J. Fan, B. Zhu, J. Yu, Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres. Sens. Actuators B Chem. 331, 129425 (2021)

    Article  CAS  Google Scholar 

  6. M. Punginsang, D. Zappa, E. Comini, A. Wisitsoraat, G. Sberveglieri, A. Ponzoni, C. Liewhiran, Selective H2S gas sensors based on ohmic hetero-interface of Au-functionalized WO3 nanowires. Appl. Surf. Sci. 571, 151262 (2022)

    Article  CAS  Google Scholar 

  7. C. Wang, Y. Li, F. Gong, Y. Zhang, S. Fang, H. Zhang, Advances in doped ZnO nanostructures for gas sensor. Chem. Record 20, 1553–1567 (2020)

    Article  CAS  Google Scholar 

  8. T. Li, W. Zeng, Z. Wang, Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: a review. Sens. Actuators B Chem. 221, 1570–1585 (2015)

    Article  CAS  Google Scholar 

  9. H.-J. Cho, V.T. Chen, S. Qiao, W.-T. Koo, R.M. Penner, I.-D. Kim, Pt-functionalized PdO nanowires for room temperature hydrogen gas sensors. ACS Sens. 3, 2152–2158 (2018)

    Article  CAS  Google Scholar 

  10. M. Bai, H. Huang, Z. Liu, T. Zhan, S. Xia, X. Li, N. Sibirev, A. Bouravleuv, V.G. Dubrovskii, G. Cirlin, InAs/InP core/shell nanowire gas sensor: Effects of InP shell on sensitivity and long-term stability. Appl. Surf. Sci. 498, 143756 (2019)

    Article  CAS  Google Scholar 

  11. Y. Qiu, Y. Wang, Morphology-controlled synthesis of Co9S8 nanotubes for ethanol gas sensors. Appl. Surf. Sci. 585, 152764 (2022)

    Article  CAS  Google Scholar 

  12. J. Deng, B. Yu, Z. Lou, L. Wang, R. Wang, T. Zhang, Facile synthesis and enhanced ethanol sensing properties of the brush-like ZnO-TiO2 heterojunctions nanofibers. Sens. Actuators B Chem. 184, 21–26 (2013)

    Article  CAS  Google Scholar 

  13. Z. Zhu, Z. Li, X. Xiong, X. Hu, X. Wang, N. Li, T. Jin, Y. Chen, ZnO/ZnSe heterojunction nanocomposites with oxygen vacancies for acetone sensing. J. Alloys Compd. 906, 164316 (2022)

    Article  CAS  Google Scholar 

  14. D. Meng, D. Liu, G. Wang, Y. Shen, X. San, M. Li, F. Meng, Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets. Sens. Actuators B Chem. 273, 418–428 (2018)

    Article  CAS  Google Scholar 

  15. U.T. Nakate, Y.T. Yu, S. Park, High performance acetaldehyde gas sensor based on p-n heterojunction interface of NiO nanosheets and WO3 nanorods. Sens. Actuators B Chem. 344, 130264 (2021)

    Article  CAS  Google Scholar 

  16. P. Hao, G. Qiu, P. Song, Z. Yang, Q. Wang, Construction of porous LaFeO3 microspheres decorated with NiO nanosheets for high response ethanol gas sensors. Appl. Surf. Sci. 515, 146025 (2020)

    Article  CAS  Google Scholar 

  17. L.A. Horsfall, D.C. Pugh, C.S. Blackman, I.P. Parkin, The modification effect of Fe2O3 nanoparticles on ZnO nanorods improves the adsorption and detection capabilities of TEA. J. Mater. Chem. A Mater. 5, 2172–2179 (2017)

    Article  CAS  Google Scholar 

  18. J.-H. Lee, J.-H. Kim, S.S. Kim, CuO-TiO2 p-n core-shell nanowires: sensing mechanism and p/n sensing-type transition. Appl. Surf. Sci. 448, 489–497 (2018)

    Article  CAS  Google Scholar 

  19. C. Liu, B. Wang, T. Liu, P. Sun, Y. Gao, F. Liu, G. Lu, Facile synthesis and gas sensing properties of the flower-like NiO-decorated ZnO microstructures. Sens. Actuators B Chem. 235, 294–301 (2016)

    Article  CAS  Google Scholar 

  20. L. Wang, Z. Lou, R. Zhang, T. Zhou, J. Deng, T. Zhang, Hybrid Co3O4/SnO2 core-shell nanospheres as real-time rapid-response sensors for ammonia gas. ACS Appl. Mater. Interfaces 8, 6539–6545 (2016)

    Article  CAS  Google Scholar 

  21. S. Wang, Z. Li, P. Wang, C. Xiao, R. Zhao, B. Xiao, T. Yang, M. Zhang, Facile synthesis and enhanced gas sensing properties of In2O3 nanoparticle-decorated ZnO hierarchical architectures. CrystEngComm. 16, 5716 (2014)

    Article  CAS  Google Scholar 

  22. X. Liang, J. Zhang, K. Zhang, X. Yang, M. Zhang, The modification effect of Fe2O3 nanoparticles on ZnO nanorods improves the adsorption and detection capabilities of TEA. Inorg. Chem. Front. 9, 259–266 (2022)

    Article  CAS  Google Scholar 

  23. C. Qin, B. Wang, Y. Wang, Metal-organic frameworks-derived Mn-doped Co3O4 porous nanosheets and enhanced CO sensing performance. Sens. Actuators B Chem. 351, 130943 (2022)

    Article  CAS  Google Scholar 

  24. R. Yoo, A.T. Güntner, Y. Park, H.J. Rim, H.-S. Lee, W. Lee, Sensing of acetone by Al-doped ZnO. Sens. Actuators B Chem. 283, 107–115 (2019)

    Article  CAS  Google Scholar 

  25. K. Zhang, S. Qin, P. Tang, Y. Feng, D. Li, Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In2O3 heterostructures. J. Hazard. Mater. 391, 122191 (2020)

    Article  CAS  Google Scholar 

  26. C.D. Spencer, D. Schroeer, Mössbauer study of several cobalt spinels using Co57 and Fe57. Phys. Rev. B 9, 3658–3665 (1974)

    Article  CAS  Google Scholar 

  27. T. Zhou, T. Zhang, J. Deng, R. Zhang, Z. Lou, L. Wang, P-type Co3O4 nanomaterials-based gas sensor: Preparation and acetone sensing performance. Sens. Actuators B Chem. 242, 369–377 (2017)

    Article  CAS  Google Scholar 

  28. W. Tan, J. Tan, L. Li, M. Dun, X. Huang, Nanosheets-assembled hollowed-out hierarchical Co3O4 microrods for fast response/recovery gas sensor. Sens. Actuators B Chem. 249, 66–75 (2017)

    Article  CAS  Google Scholar 

  29. X. Zhang, Y. Xu, H. Liu, W. Zhao, A. Ming, F. Wei, Preparation of porous Co3O4 and its response to ethanol with low energy consumption. RSC Adv. 10, 2191–2197 (2020)

    Article  CAS  Google Scholar 

  30. C. Qin, B. Wang, N. Wu, C. Han, C. Wu, X. Zhang, Q. Tian, S. Shen, P. Li, Y. Wang, Metal-organic frameworks derived porous Co3O4 dodecahedeons with abundant active Co3+ for ppb-level CO gas sensing. Appl. Surf. Sci. 506, 144900 (2020)

    Article  CAS  Google Scholar 

  31. W. Geng, S. Ge, X. He, S. Zhang, J. Gu, X. Lai, H. Wang, Q. Zhang, Volatile Organic compound gas-sensing Properties of Bimodal Porous α-Fe2O3 with Ultrahigh Sensitivity and fast response. ACS Appl. Mater. Interfaces 10, 13702–13711 (2018)

    Article  CAS  Google Scholar 

  32. J. Li, P. Tang, J. Zhang, Y. Feng, R. Luo, A. Chen, D. Li, Facile synthesis and acetone sensing performance of hierarchical SnO2 Hollow Microspheres with controllable size and Shell Thickness. Ind. Eng. Chem. Res. 55, 3588–3595 (2016)

    Article  CAS  Google Scholar 

  33. X. Chang, X. Li, X. Qiao, K. Li, Y. Xiong, X. Li, T. Guo, L. Zhu, Q. Xue, Metal-organic frameworks derived ZnO@MoS nanosheets core/shell heterojunctions for ppb-level acetone detection: ultra-fast response and recovery. Sens. Actuators B Chem. 304, 127430 (2020)

    Article  CAS  Google Scholar 

  34. X.-T. Xue, L.-Y. Zhu, K.-P. Yuan, C. Zeng, X.-X. Li, H.-P. Ma, H.-L. Lu, D.W. Zhang, ZnO branched p-CuxO @n-ZnO heterojunction nanowires for improving acetone gas sensing performance. Sens. Actuators B Chem. 324, 128729 (2020)

    Article  CAS  Google Scholar 

  35. J. Zhang, X. Jia, T. Liu, J. Yang, S. Wang, Y. Li, D. Shao, L. Feng, H. Song, Facile strategy to synthesize porous GO/ZnO heterostructure for enhanced acetone gas sensing properties. Sens. Actuators B Chem. 359, 131601 (2022)

    Article  CAS  Google Scholar 

  36. H. Du, X. Li, P. Yao, J. Wang, Y. Sun, L. Dong, Zinc oxide coated tin oxide nanofibers for improved selective acetone sensing. Nanomaterials. 8, 509 (2018)

    Article  Google Scholar 

  37. N. Zhang, H. Li, Z. Xu, R. Yuan, Y. Xu, Y. Cui, Enhanced acetone sensing property of a sacrificial template based on cubic-like MOF-5 doped by ni nanoparticles. Nanomaterials. 10, 386 (2020)

    Article  CAS  Google Scholar 

  38. L. Guo, F. Chen, N. Xie, X. Kou, C. Wang, Y. Sun, F. Liu, X. Liang, Y. Gao, X. Yan, T. Zhang, G. Lu, Ultra-sensitive sensing platform based on Pt-ZnO-In2O3 nanofibers for detection of acetone. Sens. Actuators B Chem. 272, 185–194 (2018)

    Article  CAS  Google Scholar 

  39. K.T. Alali, J. Liu, Q. Liu, R. Li, H. Zhang, K. Aljebawi, P. Liu, J. Wang, Enhanced acetone gas sensing response of ZnO/ZnCo2O4 nanotubes synthesized by single capillary electrospinning technology. Sens. Actuators B Chem. 252, 511–522 (2017)

    Article  CAS  Google Scholar 

  40. Q. Ni, L. Sun, E. Cao, W. Hao, Y. Zhang, L. Ju, Enhanced acetone sensing performance of the ZnFe2O4/SnO2 nanocomposite. Appl. Phys. A 125, 796 (2019)

    Article  Google Scholar 

  41. W. Li, X. Wu, N. Han, J. Chen, W. Tang, Y. Chen, Core-shell Au@ZnO nanoparticles derived from Au@MOF and their sub-ppm level acetone gas-sensing performance. Powder Technol. 304, 241–247 (2016)

    Article  CAS  Google Scholar 

  42. M.Z. Ahmad, A.Z. Sadek, K. Latham, J. Kita, R. Moos, W. Wlodarski, Chemically synthesized one-dimensional zinc oxide nanorods for ethanol sensing. Sens. Actuators B Chem. 187, 295–300 (2013)

    Article  CAS  Google Scholar 

  43. L. Cai, X. Dong, G. Wu, J. Sun, N. Chen, H. Wei, S. Zhu, Q. Tian, X. Wang, Q. Jing, P. Li, B. Liu, Ultrasensitive acetone gas sensor can distinguish the diabetic state of people and its high performance analysis by first-principles calculation. Sens. Actuators B Chem. 351, 130863 (2022)

    Article  CAS  Google Scholar 

  44. X. Gao, F. Li, R. Wang, T. Zhang, A formaldehyde sensor: significant role of p-n heterojunction in gas-sensitive core-shell nanofibers. Sens. Actuators B Chem. 258, 1230–1241 (2018)

    Article  CAS  Google Scholar 

  45. D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuators B Chem. 204, 250–272 (2014)

    Article  CAS  Google Scholar 

  46. T. Wang, L. Cheng, Hollow hierarchical TiO2-SnO2-TiO2 composite nanofibers with increased active-sites and charge transfer for enhanced acetone sensing performance. Sens. Actuators B Chem. 334, 129644 (2021)

    Article  CAS  Google Scholar 

  47. S. Wicker, K. Großmann, N. Bârsan, U. Weimar, Co3O4-A systematic investigation of catalytic and gas sensing performance under variation of temperature, humidity, test gas and test gas concentration. Sens. Actuators B Chem. 185, 644–650 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers 61974057 and 50272026), the Applied Research and Development Project of Gansu Academy of Sciences (Grant Number 2018JK-02), and the Technological Project of Chengguan District of Lanzhou (Grant Number 2019RCCX0007).

Funding

This Study was supported by the National Natural Science Foundation of China (Grant Numbers 61974057 and 50272026), the Applied Research and Development Project of Gansu Academy of Sciences (Grant Number 2018JK-02), and the Technological Project of Chengguan District of Lanzhou (Grant Number 2019RCCX0007).

Author information

Authors and Affiliations

Authors

Contributions

QC: Conceptualization, Methodology, Investigation, Writing - original draft. XW and HL: Methodology, Investigation, Writing - original draft. DH, YW, XT, YC, WW and MY: Writing - review & editing.

Corresponding author

Correspondence to Hairong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Q., Wang, X., Huang, D. et al. Highly sensitive and fast response acetone gas sensor based on Co3O4–ZnO heterojunction assembled by porous nanoflowers. J Mater Sci: Mater Electron 34, 128 (2023). https://doi.org/10.1007/s10854-022-09566-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09566-y

Navigation