Skip to main content
Log in

Performance of Si-based solar cell utilizing optimized Al-doped ZnO films as TCO layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Aluminum-doped zinc oxide (AZO) is one of the most popular transparent conducting oxide layers that can be employed in many optoelectronic applications in particular in photovoltaic devices due to being a low-cost and nontoxic material. In this study, we report on the effect of deposition pressure and substrate temperature on the properties of AZO films and solar cell performance by employing the optimized films. This study consists of two stages, the first of which concerns the optimization deposition pressure while the second is the substrate temperature of AZO films by evaluating the structural, optical, and electrical properties of the films. The deposited AZO thin film under 10 mTorr deposition pressure exhibited high optical transmission (89.9%), low electrical resistivity (9.1 × 10−2 Ω.cm), and high carrier concentration (3.74 × 1019 cm−3) among the others. The impact of substrate temperature was then investigated using this deposition pressure at room temperature, 150, 200, and 250 °C. The deposited AZO films at 150 °C temperature were found to possess the highest optical transmission (91.1%), lowest resistivity (9.9 × 10−4 Ω.cm), and highest carrier concentration (1.1 × 1020 cm−3) values. Hence, the 10 mTorr deposition pressure and 150 °C substrate temperature were selected as the optimum growth parameters to obtain AZO films, which were then employed in the cell structure. It was, thus, revealed that utilizing AZO films in silicon-based solar cell using such parameters led to the enhancement in the cell efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Mazur, D. Kaczmarek, J. Domaradzki, D. Wojcieszak, S. Song, F. Placido. 2010. The Eighth International Conference on Advanced Semiconductor Devices and Microsystems, 65–68

  2. T. Vo, Y.H. Ho, P.H. Lin, Y.J.C. Tai, Cryst. Eng. Comm. 15, 6695–6701 (2013)

    Article  CAS  Google Scholar 

  3. T. Tynell, M. Karppinen, Semicond. Sci. Technol. 29, 043001 (2014)

    Article  CAS  Google Scholar 

  4. S.J. Young, C.C. Yang, L. Lai, Electrochem. Soc. 164, B3013 (2016)

    Article  Google Scholar 

  5. D.B. Potter, M.J. Powell, I.P. Parkin, C. Carmalt, J. Mater. Chem. 6, 588–597 (2018)

    CAS  Google Scholar 

  6. S. Mridha, D. Basak, J. Phys. D. 40, 6902 (2007)

    Article  CAS  Google Scholar 

  7. A. Barhoumi, G. Leroy, B. Duponchel, J. Gest, L. Yang, N. Waldhoff, S.J.S. Guermazi, Microstructures 82, 483–498 (2015)

    Article  CAS  Google Scholar 

  8. A. Martın, J. Espinos, A. Justo, J. Holgado, F. Yubero, A.J.S. González-Elipe, Surf. Coat. Technol. 151, 289–293 (2002)

    Article  Google Scholar 

  9. P. Sagar, M. Kumar, R. Mehra, Thin Solid Films 489, 94–98 (2005)

    Article  CAS  Google Scholar 

  10. T.Y. Ma, S. Lee, J. Mater. Sci. Mater. 11, 305–309 (2000)

    Article  CAS  Google Scholar 

  11. A. Altuntepe, M.A. Olgar, S. Erkan, O. Hasret, A.E. Keçeci, G. Kökbudak, M. Tomakin, A. Seyhan, R. Turan, R. Zan, Renew. Energy 180, 178–185 (2021)

    Article  CAS  Google Scholar 

  12. C. Ma, X. Lu, B. Xu, F. Zhao, X. An, B. Li, L. Sun, J. Jiang, Y. Chen, J. Chu, J. Alloys Compd. 774, 201–209 (2019)

    Article  CAS  Google Scholar 

  13. J.H. Park, J.M. Shin, S.-Y. Cha, J.W. Park, S.-Y. Jeong, H.K. Pak, C. Cho, J. Korean. Phys. Soc. 49, 584 (2006)

    Google Scholar 

  14. L. Dejam, S. Mohammad Elahi, H.H. Nazari, H. Elahi, S. Solaymani, A. Ghaderi, J. Mater. Sci. Mater. 27, 685–696 (2016)

    Article  CAS  Google Scholar 

  15. A. Yildiz, H. Cansizoglu, R. Abdulrahman, T. Karabacak, J. Mater. Sci. Mater. 26, 5952–5957 (2015)

    Article  CAS  Google Scholar 

  16. K. Mahmood, B.S. Swain, H. Jung, Nanoscale 6, 9127–9138 (2014)

    Article  CAS  Google Scholar 

  17. M. Morales-Masis, S. De Wolf, R. Woods-Robinson, J.W. Ager, C. Ballif, Adv. Electron. Mater. 3, 1600529 (2017)

    Article  Google Scholar 

  18. S. Baek, J.C. Lee, Y.-J. Lee, S.S. Iftiquar, Y. Kim, J. Park, J. Yi, Nanoscale 7, 1–5 (2012)

    Google Scholar 

  19. C.H. Huang, H.L. Cheng, W.E. Chang, M. Wong, J. Electrochem. Soc. 158, H510 (2011)

    Article  CAS  Google Scholar 

  20. R. Mereu, S. Marchionna, A.L. Donne, L. Ciontea, S. Binetti, M. Acciarri, Phys. Status Solidi C 11, 1464–1467 (2014)

    Article  CAS  Google Scholar 

  21. B.G. Shohany, A. Zak, Ceram. Int. 46, 5507–5520 (2020)

    Article  Google Scholar 

  22. A. Altuntepe, A. Seyhan, R. Zan, J. Mol. Struct. 1200, 127055 (2020)

    Article  CAS  Google Scholar 

  23. D.S. Kim, J.H. Park, S.J. Lee, K.J. Ahn, M.S. Lee, M.H. Ham, W. Lee, J. Myoung, Mater. Sci. Semicond. Process 16, 997–1001 (2013)

    Article  CAS  Google Scholar 

  24. A. Anders, Thin Solid Films 518, 4087–4090 (2010)

    Article  CAS  Google Scholar 

  25. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132–145 (2010)

    Article  CAS  Google Scholar 

  26. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  CAS  Google Scholar 

  27. J. Pankove, Optical Processes in Semiconductors (Dover Publications Inc, New York, 1971)

    Google Scholar 

  28. F. Wang, M. Wu, Y. Wang, Y. Yu, X. Wu, L.J.V. Zhuge, Vacuum 89, 127–131 (2013)

    Article  CAS  Google Scholar 

  29. W. Yang, Z. Liu, D.-L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wu, Appl. Surf. Sci. 255, 5669–5673 (2009)

    Article  CAS  Google Scholar 

  30. J. Venables, G. Spiller, Nucleation and growth of thin films (Surface Mobilities on Solid Materials, Springer, 1983)

    Book  Google Scholar 

  31. X. Chen, W. Guan, G. Fang, X. Zhao, Appl. Surf. Sci. 252, 1561–1567 (2005)

    Article  CAS  Google Scholar 

  32. Y. Kim, K. Lee, T. Lee, B. Cheong, T.-Y. Seong, W. Kim, Appl. Surf. Sci. 255, 7251–7256 (2009)

    Article  CAS  Google Scholar 

  33. H.-L. Shen, H. Zhang, L.-F. Lu, F. Jiang, Y. Chao, Prog. Nat. Sci. 20, 44–48 (2010)

    Article  Google Scholar 

  34. H.M. Zhou, D.Q. Yi, Z.M. Yu, L.R. Xiao, J. Li, Thin Solid Films 515, 6909–6914 (2007)

    Article  CAS  Google Scholar 

  35. A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, C. Sedrati, Y. Bouachiba, C. Benazzouz, Ceramics 42, 6701–6706 (2016)

    Article  CAS  Google Scholar 

  36. O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, S. Railean, Sol. Energy Mater. Sol. Cells 93, 1417–1422 (2009)

    Article  CAS  Google Scholar 

  37. S. Chander, A. Purohit, A. Sharma, S. Nehra, M. Dhaka, Energy Rep. 1, 104–109 (2015)

    Article  Google Scholar 

Download references

Funding

There is no funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

AA Writing original draft and measurements. SE Writing original draft and measurements. OH Literature review and measurements. AY Literature review and measurements. DY Writing—review and editing, visualization. MT Experimental procedure design, visualization. MAO Data curation, writing—review and editing, validation, supervision. RZ Conceptualization, data curation, writing—review and editing, validation, supervision.

Corresponding author

Correspondence to Recep Zan.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving animals performed by any of the authors. Also, this article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altuntepe, A., Erkan, S., Hasret, O. et al. Performance of Si-based solar cell utilizing optimized Al-doped ZnO films as TCO layer. J Mater Sci: Mater Electron 34, 75 (2023). https://doi.org/10.1007/s10854-022-09557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09557-z

Navigation