Skip to main content
Log in

Microwave sintering Ag nanoparticle interconnects infiltrated by silver acetate ammonia mixed solution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal interconnects often require subsequent processing to functionalize metal microstructures in jet printer, 3D printer, and nanoimprint process with nanoparticles. In this paper, the silver acetate ammonia mixed solution was used to infiltrate pseudoplastic metal nanoparticle fluids, and silver acetate was decomposed quickly by microwave to make the interconnect wires. The experimental results show that after 30 min of microwave sintering, the resistivity of the interconnect wires infiltrated by the silver acetate ammonia mixed solution is reduced by 62.9% compared to the interconnect wires only subjected to microwave heat treatment. It takes 75 min to achieve the same resistivity by only microwave sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All original measurements and data analysis of this work will be available when required.

References

  1. J. Moon, M. Alahbakhshi, A. Gharajeh, Q. Li, Z. Li, R. Haroldson, S. Kwon, R. Hawkins, M.J. Kim, W. Hu, X. Zhang, A. Zakhidov, Q. Gu, ACS Photonics 9, 1984–1991 (2022)

    Article  CAS  Google Scholar 

  2. M. Zhu, Y. Xie, J. Shao, Y. Chen, Micro and Nano Eng. 13, 10091 (2021)

    Article  Google Scholar 

  3. Y. Gu, J. Xu, J. Lin, H. Ma, H. Zhao, Y. Zhang, B. Sun, Sol. Energy 241, 172–183 (2022)

    Article  CAS  Google Scholar 

  4. G. Ding, Q. Jin, Q. Chen, Z. Hu, J. Liu, Nanoscale Res. Lett. 10, 491 (2015)

    Article  CAS  Google Scholar 

  5. P. Wangyang, Y. Gan, Q. Wang, X. Jiang, J. Mater. Chem. C 2, 6140–6147 (2014)

    Article  CAS  Google Scholar 

  6. Q. Zhang, D. Sanchez-Fuentes, R. Desgarceaux, P. Escofet-Majoral, J. Oro-Soler, J. Gazquez, G. Larrieu, B. Charlot, A. Gomez, M. Gich, A. Carretero-Genevrier, ACS Appl. Mater. Interfaces 12, 4732–4740 (2020)

    Article  CAS  Google Scholar 

  7. Y. Li, M. Kim, M.G. Allen, J. Micromech. Microeng. 28, 027001 (2018)

    Article  Google Scholar 

  8. H. Hillmer, C. Woidt, A. Istock, A. Kobylinskiy, D.T. Nguyen, N. Ahmed, R. Brunner, T. Kusserow, Nanomaterials 11, 164 (2021)

    Article  CAS  Google Scholar 

  9. S.R. Deng, B.R. Lu, B.Q. Dong, J. Wan, Z. Shu, J. Xue, Y. Chen, E. Huq, R. Liu, X.-P. Qu, Microelectron. Eng. 87, 985–988 (2010)

    Article  CAS  Google Scholar 

  10. M. Kim, D. Lee, T.H. Kim, Y. Yang, H.J. Park, J. Rho, ACS Photonics 6, 2530–2536 (2019)

    Article  CAS  Google Scholar 

  11. Y. Chen, Appl. Phys. A 121, 451–465 (2015)

    Article  CAS  Google Scholar 

  12. S. Takei, T. Ogawa, R. Deschner, K. Jen, T. Nihira, M. Hanabata, C.G. Willson, Jpn. J. Appl. Phys. 49, 075201 (2010)

    Article  Google Scholar 

  13. S. Takei, T. Ogawa, R. Deschner, C.G. Willson, Microelectron. Eng. 116, 44–50 (2014)

    Article  CAS  Google Scholar 

  14. S. Takei, T. Ogawa, R. Deschner, M. Hanabata, C.G. Willson, Micro & Nano Lett. 5, 117–120 (2010)

    Article  CAS  Google Scholar 

  15. U. Tahir, J.I. Kim, S. Javeed, A. Khaliq, J.H. Kim, D.I. Kim, M.Y. Jeong, Nanomaterials 12, 480 (2022)

    Article  CAS  Google Scholar 

  16. N. Cates, V.J. Einck, L. Micklow, J. Morere, U. Okoroanyanwu, J.J. Watkins, S. Furst, Nanotechnology 32, 155301 (2021)

    Article  CAS  Google Scholar 

  17. Q. Zheng, X. Li, Q. Yang, C. Li, L. Wu, Y. Wang, P. Sun, H. Tian, C. Wang, X. Chen, J. Shao, Small Methods 6, e2101539 (2022)

    Article  Google Scholar 

  18. J. Ge, B. Ding, S. Hou, M. Luo, D. Nam, H. Duan, H. Gao, Y.C. Lam, H. Li, Nat. Commun. 12, 3146 (2021)

    Article  CAS  Google Scholar 

  19. C.H. Lin, Journal of Micro/Nanolithography. MEMS MOEMS 5, 011003 (2006)

    Article  Google Scholar 

  20. L. Dongxue, S. Yufeng, X. Weiwei, L. Chaoran, W. Wen, W. Pan, D. Zhiyong, RSC Adv. 4, 30402–30411 (2014)

    Article  Google Scholar 

  21. W. Xia, Y. Su, T. Li, C. Liu, D. Li, Z. Duan, RSC Adv. 3, 17851 (2013)

    Article  CAS  Google Scholar 

  22. B. Liu, Y. Yu, Z. Hu, M. Li, L. Ma, H. Sun, J. Jia, C. Jiang, Y. Zhong, Y. Chen, Z. Duan, Nanotechnology 33, 275301 (2022)

    Article  Google Scholar 

  23. B. Briscoe, A.C. Smith, J. Phys. D: Appl. Phys. 15, 579–594 (1982)

    Article  CAS  Google Scholar 

  24. M.M. Mrokowska, A. Krzton-Maziopa, Sci Rep 9, 7897 (2019)

    Article  Google Scholar 

  25. Y. Kim, G. Kim, J. Lee, Microelectron. Eng. 87, 839–842 (2010)

    Article  CAS  Google Scholar 

  26. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, J. Mol. Liq. 337, 116405 (2021)

    Article  CAS  Google Scholar 

  27. D.M. Elsisi, A. Ragab, A.A. Elhenawy, A.A. Farag, A.M. Ali, Y.A. Ammar, J. Mol. Struct. 1247, 131314 (2022)

    Article  CAS  Google Scholar 

  28. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Int. J. Hydrogen Energy 47, 14319–14330 (2022)

    Article  CAS  Google Scholar 

  29. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, RSC Adv 11, 11500–11512 (2021)

    Article  CAS  Google Scholar 

  30. X. Hao, X. Wang, S. Zhou, H. Zhang, M. Liu, Mater. Chem. Phys. 215, 327–331 (2018)

    Article  CAS  Google Scholar 

  31. F. Zhang, D. Ren, L. Huang, Y. Zhang, Y. Sun, D. Liu, Q. Zhang, W. Feng, Q. Zheng, Adv. Funct. Mater. 31(49), 2107082 (2021)

    Article  CAS  Google Scholar 

  32. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrason. Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  33. L. Shirmohammadzadeh, H.F. Moafi, A.F. Shojaei, J. Cluster Sci. 33, 1475–1488 (2021)

    Article  Google Scholar 

  34. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Int. J. Hydrogen Energy 44, 24005–24016 (2019)

    Article  CAS  Google Scholar 

  35. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, J. Mater. Sci.: Mater. Electron. 27, 1244–1253 (2015)

    Google Scholar 

  36. H.H. Hsu, Y.C. Chiu, P. Chiou, C.H. Cheng, J. Alloys Compd. 643, S187–S192 (2015)

    Article  CAS  Google Scholar 

  37. C. Du, M. Zhang, Q. Huang, S. Zhang, Y. Chai, Nanoscale 11, 15029–15036 (2019)

    Article  CAS  Google Scholar 

  38. Y. Tang, W. He, G. Zhou, S. Wang, X. Yang, Z. Tao, J. Zhou, Nanotechnology 23, 355304 (2012)

    Article  Google Scholar 

  39. Q. Li, M. Li, B. Jia, L. Shangguan, L. Ma, Y. Zhong, Y. Su, Z. Duan, Appl. Phys. Exp. 12(5), 055004 (2019)

    Article  CAS  Google Scholar 

  40. N.A. Ulloa-Castillo, O. Martinez-Romero, R. Hernandez-Maya, E. Segura-Cardenas, A. Elias-Zuniga, Materials 14(2), 373 (2021)

    Article  CAS  Google Scholar 

  41. B. Jia, Q. Li, L. Ma, M. Li, Y. Zhong, Z. Duan, J. Magn. Magn. Mater. 513, 167232 (2020)

    Article  CAS  Google Scholar 

  42. S.P. Sreenilayam, É. Mccarthy, L. Mckeon, O. Ronan, R. Mccann, K. Fleischer, B. Freeland, V. Nicolosi, D. Brabazon, Chem. Eng. J. 449, 137817 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the National Natural Science Foundation of China (Grant Nos.U1704155, 51175479) and the Ministry of Science and Technology of the People’s Republic of China (G2021026027L).

Author information

Authors and Affiliations

Authors

Contributions

BY L contributed to conceptualization, methodology, investigation, validation, formal analysis, visualization, and writing of the original draft. YL Y, DD J, ZN H, LH M, MK L, and YH Z contributed to investigation. ZY D contributed to conceptualization, investigation, and validation.

Corresponding author

Correspondence to Zhiyong Duan.

Ethics declarations

Conflict of interest

The authors confirm that there is no conflict of interest or competing interest about this work with anybody.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Yu, Y., Jiang, D. et al. Microwave sintering Ag nanoparticle interconnects infiltrated by silver acetate ammonia mixed solution. J Mater Sci: Mater Electron 34, 101 (2023). https://doi.org/10.1007/s10854-022-09548-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09548-0

Navigation