Skip to main content
Log in

Design of tripartite square ring metamaterial absorber using polyvinyl chloride as a flexible substrate at s-band and c-band spectrums

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Absorbers have attracted the attention of plenty of people to implement several applications, including stealth technology that requires flexibility features. Metamaterial absorbers can achieve high absorbance and flexibility features. Polyvinyl chloride is a polymer with flexible features that can be incorporated into metamaterials. This study analyses the tripartite square ring metamaterial absorber fabricated by hand painting. The multiple absorbance peaks are yielded on the tripartite square ring metamaterial absorber. The simulation absorbance peaks are 0.98 at 2.36 GHz, 0.95 at 3.75 GHz, and 0.99 at 4.3 GHz, while the experimental absorbance peaks are 0.89 at 2.7 GHz, 0.68 at 4.0 GHz, and 0.94 at 4.4 GHz. The disparities between simulation and experimental results are delivered due to the inaccuracies in the fabrication method. However, the trend of experimental results agrees with the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Funding

The authors are grateful to the Direktorat Sumber Daya, Direktorat Jenderal Pendidikan Tinggi, Kementerian Pendidikan, Kebudayaan, Riset dan Teknologi, World Class Research Program (No. 081/E4.1/AK.04.PT/2021), for fully supporting this research.

Data availability

Not applicable

References

  1. R.M.H. Bilal, M.A. Saeed, P.K. Choudhury, M.A. Baqir, W. Kamal, M.M. Ali, A.A. Rahim, Sci. Rep. 10, 1 (2020)

    Google Scholar 

  2. J.-C. Deinert, D. Alcaraz Iranzo, R. Pérez, X. Jia, H.A. Hafez, I. Ilyakov, N. Awari, M. Chen, M. Bawatna, A.N. Ponomaryov, ACS Nano 15, 1145 (2020)

    Google Scholar 

  3. X. Hu, Y.-S. Lin, Results Phys. 18, 103267 (2020)

    Google Scholar 

  4. V.G. Veselago, Electromagn. Mater. 115, 112 (2003)

    Google Scholar 

  5. M. Choi, J. Choe, B. Kang, C. Choi, Curr. Appl. Phys. 13, 1723 (2013)

    Google Scholar 

  6. M. Askari, A. Zakery, A.S. Jahromi, Photonics. Nanostruct. 30, 78 (2018)

    Google Scholar 

  7. M. Choi, S.H. Lee, Y. Kim, S.B. Kang, J. Shin, M.H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, B. Min, Nature 470, 369 (2011)

    CAS  Google Scholar 

  8. H.T. Yudistira, A. Pradhipta Tenggara, V. Dat Nguyen, T. Teun Kim, F. Dian Prasetyo, C. Choi, M. Choi, D. Byun, Appl. Phys. Lett. 103, 211106 (2013)

    Google Scholar 

  9. M. Lee, E. Lee, S. So, S. Byun, J. Son, B. Ge, H. Lee, H.S. Park, W. Shim, J.H. Pee, B. Min, S.-P. Cho, Z. Shi, T.W. Noh, J. Rho, J.-Y. Kim, I. Chung, J. Am. Chem. Soc. 143, 20725 (2021)

    CAS  Google Scholar 

  10. P. Huo, S. Zhang, Y. Liang, Y. Lu, T. Xu, Adv. Opt. Mater. 7, 1801616 (2019)

    Google Scholar 

  11. Y.D. Jang, J.S. Baek, V. Devaraj, M.D. Kim, J.D. Song, Y. Wang, X. Zhang, D. Lee, Optica 5, 832 (2018)

    CAS  Google Scholar 

  12. W.J. Padilla, R.D. Averitt, Nat. Reviews Phys. 4, 85 (2022)

    Google Scholar 

  13. I.E. Carranza, J.P. Grant, J. Gough, D. Cumming, IEEE J. Sel. Top. Quantum Electron. 23, 1 (2016)

    Google Scholar 

  14. H.T. Yudistira, L.Y. Ginting, K. Kananda, Mater. Res. Express 6, 25804 (2019)

    Google Scholar 

  15. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    CAS  Google Scholar 

  16. H.T. Yudistira, K. Kananda, Eur. Phys. J. Plus. 136, 603 (2021)

    CAS  Google Scholar 

  17. R. v Jagtap, A.D. Ugale, P.S. Alegaonkar, Mater. Chem. Phys. 205, 366 (2018)

    Google Scholar 

  18. K. Iwaszczuk, A.C. Strikwerda, K. Fan, X. Zhang, R.D. Averitt, P.U. Jepsen, Opt. Express 20, 1 (2012)

    Google Scholar 

  19. H. Tao, N.I. Landy, K. Fan, A.C. Strikwerda, W.J. Padilla, R.D. Averitt, X. Zhang, Tech. Dig. - Int. Electron Devices Meet. 311, 113 (2008). https://doi.org/10.1109/IEDM.2008.4796673

    Google Scholar 

  20. C. Xiao-li, T. Chang-hui, C. Zhi-xin, C. Tian-ping, Optik 411, 114 (2018). https://doi.org/10.1016/j.ijleo.2018.07.091

    Google Scholar 

  21. M. Obaidullah, V. Esat, C. Sabah, Opt. Laser Technol. 134, 106623 (2021)

    CAS  Google Scholar 

  22. J. Liu, L. Fan, J. Ku, L. Mao, Opt. Quantum Electron. 48, 80 (2016)

    Google Scholar 

  23. H. Tao, E.A. Kadlec, A.C. Strikwerda, K. Fan, W.J. Padilla, R.D. Averitt, E.A. Shaner, X. Zhang, Opt. Express 19, 21620 (2011)

    CAS  Google Scholar 

  24. J.W. Park, P. van Tuong, J.Y. Rhee, K.W. Kim, W.H. Jang, E.H. Choi, L.Y. Chen, Y. Lee, Opt. Express 21, 8 (2013)

    Google Scholar 

  25. H.T. Yudistira, S. Liu, T.J. Cui, H. Zhang, Beilstein. J. Nanotechnol. 9, 1 (2018)

    Google Scholar 

  26. M. Bakır, M. Karaaslan, E. Unal, O. Akgol, C. Sabah, Opto-Electron. Rev. 25, 318 (2017)

    Google Scholar 

  27. Y. Xie, X. Fan, Y. Chen, J.D. Wilson, R.N. Simons, J.Q. Xiao, Sci. Rep. 7, 1 (2017)

    Google Scholar 

  28. P. Gairola, S.P. Gairola, V. Kumar, K. Singh, S.K. Dhawan, Synth. Met. 221, 326 (2016)

    CAS  Google Scholar 

  29. H.T. Yudistira, K. Kananda, J. Electron. Mater. 50, 389 (2021)

    CAS  Google Scholar 

  30. C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, W. Liu, Sci. Rep. 6, 1 (2016)

    Google Scholar 

  31. H.T. Yudistira, K. Kananda, J. Electron Mater. 50, 7 (2021)

    Google Scholar 

  32. X. Chen, T.M. Grzegorczyk, B.-I. Wu, J. Pacheco Jr., J.A. Kong, Phys. Rev. E 70, 16608 (2004)

    Google Scholar 

  33. A. Rasad, H.T. Yudistira, F. Qalbina, A.G. Saputro, A. Faisal, Sens. Actuators A Phys. 332(2021)

    CAS  Google Scholar 

  34. H.T. Yudistira, Mater. Res. Express. 6, 7 (2019)

    Google Scholar 

  35. W. Zhou, P. Wang, N. Wang, W. Jiang, X. Dong, S. Hu, AIP Adv. 5, 11 (2015)

    Google Scholar 

  36. C.M. Tran, H. van Pham, H.T. Nguyen, T.T. Nguyen, L.D. Vu, T.H. Do, Plasmonics 14, 1587 (2019)

    Google Scholar 

  37. B. Ma, S. Liu, B. Bian, X. Kong, H. Zhang, Z. Mao, B. Wang, J. Electromagn. Waves Appl. 28, 1478 (2014)

    Google Scholar 

  38. Y. Liu, B. Zhang, J. Duan, Y. Xu, Appl. Opt. 57, 10257 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Direktorat Sumber Daya, Direktorat Jenderal Pendidikan Tinggi, Kementerian Pendidikan, Kebudayaan, Riset dan Teknologi, World Class Research Program (No. 081/E4.1/AK.04.PT/2021), for fully supporting this research. NA acknowledges this study as fulfilling final project course (MS4254).

Author information

Authors and Affiliations

Authors

Contributions

NA: contributed to writing the manuscript, sample fabricating and measuring. HTY: participated in the mathematical analysis, wrote the manuscript, and managed a research project. FQ: contributed to revising the manuscript.

Corresponding author

Correspondence to Hadi Teguh Yudistira.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest on behalf of all authors.

Ethical approval

Not applicable.

Consent to participate

All authors participate in this work.

Consent to publish

All authors agree to publish this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aqilafif, N., Yudistira, H.T. & Qalbina, F. Design of tripartite square ring metamaterial absorber using polyvinyl chloride as a flexible substrate at s-band and c-band spectrums. J Mater Sci: Mater Electron 34, 199 (2023). https://doi.org/10.1007/s10854-022-09544-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09544-4

Navigation