Skip to main content
Log in

Influence of halogen substitution in double perovskite Rb2Sn(Br0.75I0.25)6 on the photocatalytic degradation of methylene blue dye under visible light irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research work, we reported the preparation of lead-free undoped [Rb2SnBr6] and halogen-doped Rubidium tin bromide [Rb2Sn(Br0.75I0.25)6] double perovskite materials using the wet chemical method and they were used for photocatalytic degradation of methylene blue dye (MB) in water solution under visible light irradiation. The structural, optical, thermal, surface morphological analyses and the presence of oxidation state of the prepared samples were characterized by XRD, Raman, UV, PL, TGA/DTA, FESEM-EDAX and XPS, respectively. The UV studies revealed that the bandgap values were tuned from 2.07 eV to 1.80 eV, resulting in a redshift of emission peak which was confirmed by PL studies. TGA/DTA studies showed that the thermal stability slightly improved for doped perovskite over undoped perovskite material. The photocatalytic experiment showed that the degradation (78%) ability of halogen-doped perovskite material is slightly enhanced over undoped perovskite after 120 min irradiation of visible light. Hence, this defect-ordered doped double perovskite is considered to be a potential material for the degradation of similar dyes mainly due to their bandgap values in the visible light region. In addition, it was found from the elemental trapping experiment using different scavengers, the primary active species were hydroxyl radicals (∙OH) and holes (h+) during the photodegradation of MB dye. Charge transfer and recombination processes between electrons and holes of the synthesized double perovskite materials are analysed using electrochemical impedance spectroscopy (EIS) studies. We also illustrated the possible photocatalytic reaction mechanism diagrammatically using band positions of double perovskite materials estimated using Mott-Schottky plots, and this study implies that the synthesized double perovskite material has N-type semiconductor nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

We confirm that we have known the research data policy, and the data are available from the corresponding author on reasonable request.

References

  1. D. Toloman, O. Pana, M. Stefan, A. Popa, C. Leostean, S. Macavei, D. Silipas, I. Perhaita, M.D. Lazar, L. Barbu-Tudoran, J. Colloid Interface Sci. 542, 296–307 (2019)

    Article  CAS  Google Scholar 

  2. A. Molla, M. Sahu, S. Hussain, J. Mater. Chem. A 3(30), 15616–15625 (2015)

    Article  CAS  Google Scholar 

  3. W. Zhang, Q. Zhao, X. Wang, X. Yan, J. Xu, Z. Zeng, Catal. Sci. Technol. 7(13), 2753–2762 (2017)

    Article  CAS  Google Scholar 

  4. X. Zhang, A. Liu, Y. Cao, J. Xie, W. Jia, D. Jia, New J. Chem. 43(27), 10965–10972 (2019)

    Article  CAS  Google Scholar 

  5. R. Maity, A. Dutta, S. Halder, S. Shannigrahi, K. Mandal, T.P. Sinha, Phys. Chem. Chem. Phys. 23(30), 16060–16076 (2021)

    Article  CAS  Google Scholar 

  6. W. Meng, R. Hu, J. Yang, Y. Du, J. Li, H. Wang, Chin. J. Catal. 37(8), 1283–1292 (2016)

    Article  CAS  Google Scholar 

  7. Z.Z. Vasiljevic, M.P. Dojcinovic, J.D. Vujancevic, I. Jankovic-Castvan, M. Ognjanovic, N.B. Tadic, S. Stojadinovic, G.O. Brankovic, M.V. Nikolic, Royal Soc. Open Sci. 7(9), 200708 (2020)

    Article  CAS  Google Scholar 

  8. F. Yang, L. Yang, C. Ai, P. Xie, S. Lin, C.Z. Wang, X. Lu, Nanomaterials 8(7), 455 (2018)

    Article  Google Scholar 

  9. G. Li, J. Huang, J. Chen, Z. Deng, Q. Huang, Z. Liu, W. Guo, R. Cao, ACS Omega 4(2), 3392–3397 (2019)

    Article  CAS  Google Scholar 

  10. B. Revathi, L. Balakrishnan, S. Pichaimuthu, A. Nirmala Grace, N. Krishna Chandar, J. Mater. Sci.: Mater. Electron. 31(24), 22487–22497 (2020)

    CAS  Google Scholar 

  11. L.M.C. Honorio, A.L.M. de Oliveira, E.C. da Silva Filho, J.A. Osajima, A. Hakki, D.E. Macphee, I.M.G. dos Santos, Appl. Surface Sci. 528, 146991 (2020)

    Article  CAS  Google Scholar 

  12. H. Maleki, J. Mater. Sci.: Mater. Electron. 29(14), 11862–11869 (2018)

    CAS  Google Scholar 

  13. B. Modak, S.K. Ghosh, Chem. Phys. Lett. 613, 54–58 (2014)

    Article  CAS  Google Scholar 

  14. D. Zhou, G. Wang, Y. Feng, W. Chen, J. Chen, Z. Yu, Y. Zhang, J. Wang, L. Tang, Dalton Trans. 50(22), 7768–7775 (2021)

    Article  CAS  Google Scholar 

  15. K. Li, S. Li, W. Zhang, Z. Shi, D. Wu, X. Chen, P. Lin, Y. Tian, X. Li, J. Colloid Interface Sci. 596, 376–383 (2021)

    Article  CAS  Google Scholar 

  16. S. Chanda, R. Maity, S. Saha, A. Dutta, T.P. Sinha, J. Sol-Gel. Sci. Technol. 99(3), 600–613 (2021)

    Article  CAS  Google Scholar 

  17. J.W. Lim, H. Kwon, S.H. Kim, Y.J. You, J.S. Goo, D.H. Ko, H.J. Lee, D. Kim, Nano Energy 75, 104984 (2020)

    Article  CAS  Google Scholar 

  18. P. Shirazi, M. Rahbar, M. Behpour, M. Ashrafi, New J. Chem. 44(1), 231–238 (2020)

    Article  CAS  Google Scholar 

  19. B. Lee, A. Krenselewski, S.I. Baik, D.N. Seidman, R.P. Chang, Sustainable Energy Fuels 1(4), 710–724 (2017)

    Article  CAS  Google Scholar 

  20. R. Ganesan, S.P. Vinodhini, V. Balasubramani, G. Parthipan, T.M. Sridhar, R. Arulmozhi, R. Muralidharan, New J. Chem. 43(38), 15258–15266 (2019)

    Article  CAS  Google Scholar 

  21. M. Chen, M.G. Ju, A.D. Carl, Y. Zong, R.L. Grimm, J. Gu, X.C. Zeng, Y. Zhou, N.P. Padture, Joule 2(3), 558–570 (2018)

    Article  CAS  Google Scholar 

  22. S. Thirumalairajan, K. Girija, V.R. Mastelaro, N. Ponpandian, New J. Chem. 38(11), 5480–5490 (2014)

    Article  CAS  Google Scholar 

  23. B.M. Bresolin, S. Ben Hammouda, M. Sillanpaa, Nanomaterials 10(1), 115 (2020)

    Article  CAS  Google Scholar 

  24. B.M. Bresolin, S.B. Hammouda, M. Sillanpaa, J. Photochem. Photobiol., A 376, 116–126 (2019)

    Article  CAS  Google Scholar 

  25. D. Wu, Y. Tao, Y. Huang, B. Huo, X. Zhao, J. Yang, X. Jiang, Q. Huang, F. Dong, X. Tang, J. Catal. 397, 27–35 (2021)

    Article  CAS  Google Scholar 

  26. D.K. Bhat, H. Bantawal, U.S. Shenoy, Nanoscale Adv. 2(12), 5688–5698 (2020)

    Article  CAS  Google Scholar 

  27. A. Malathi, P. Arunachalam, V.S. Kirankumar, J. Madhavan, A.M. Al-Mayouf, Opt. Mater. 84, 227–235 (2018)

    Article  CAS  Google Scholar 

  28. G. Venkatesh, M. Geerthana, S. Prabhu, R. Ramesh, K.M. Prabu, Optik 206, 164055 (2020)

    Article  CAS  Google Scholar 

  29. R. Nagarajan, S. Ahmad, M. Kumar, M. Gupta, G. Vijaya Prakash, Eur J. Inorg. Chem 45, 4295–4302 (2020)

    Article  Google Scholar 

  30. X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu, M.G. Kanatzidis, Sol. Energy Mater. Sol. Cells 159, 227–234 (2017)

    Article  CAS  Google Scholar 

  31. E. López-Fraguas, S. Masi, I. Mora-Seró, ACS Appl. Energy Mater. 2(12), 8381–8387 (2019)

    Article  Google Scholar 

  32. A. Veronese, C. Ciarrocchi, M. Marelli, P. Quadrelli, M. Patrini, L. Malavasi, Front Electron. (2021). https://doi.org/10.3389/felec.2021.703182

    Article  Google Scholar 

  33. K. Kundu, P. Dutta, P. Acharyya, K. Biswas, Mater. Res. Bull. 140, 111339 (2021)

    Article  CAS  Google Scholar 

  34. A. Bhorde, R. Waykar, S.R. Rondiya, S. Nair, G. Lonkar, A. Funde, N.Y. Dzaze, ES Mater. Manuf. 12, 43–52 (2021)

    CAS  Google Scholar 

  35. R. Ganesan, R. Muralidharan, G. Parthipan, S.P. Vinodhini, V. Balasubramani, T.M. Sridhar, R. Arulmozhi, H. Leelavathi, J. Mater. Sci.: Mater. Electron. 32(20), 25409–25424 (2021)

    CAS  Google Scholar 

  36. S. Bonomi, M. Patrini, G. Bongiovanni, L. Malavasi, RSC Adv. 10(48), 28478–28482 (2020)

    Article  CAS  Google Scholar 

  37. J. Wu, Z. Zhao, Y. Zhou, Sci. Rep. 12(1), 1–8 (2022)

    Article  Google Scholar 

  38. A. Kaltzoglou, M. Antoniadou, A.G. Kontos, C.C. Stoumpose, D. Perganti, E. Siranidi, V. Raptis, K.N. Trohidou, V. Psycharis, M.G. Kanatzidis, P. Falaras, J. Phys Chem C 120(22), 11777–11785 (2016)

    Article  CAS  Google Scholar 

  39. J.L. Xie, Z.Q. Huang, B. Wang, W.J. Chen, W.X. Lu, X. Liu, J.L. Song, Nanoscale 11(14), 6719–6726 (2019)

    Article  CAS  Google Scholar 

  40. M.A. Razzaq, T. Islam, Global J. Mater. Sci. Eng 2, 1–5 (2020)

    Article  Google Scholar 

  41. G. Murtaza, S. Hussain, M. Faizan, S. Khan, E. Algrafy, M.A. Ali, A. Laref, Physica B 595, 412345 (2020)

    Article  CAS  Google Scholar 

  42. P.D. Sreedevi, P. Ravindran, AIP Conference Proceedings 2369 (1), 020149 (2021). AIP Publishing LLC. https://doi.org/10.1063/5.0061126

  43. M. Faizan, K.C. Bhamu, S.H. Khan, G. Murtaza, X. He, (2020) arXiv preprint arXiv:2002.07543

  44. M. Huma, M. Rashid, Q. Mahmood, E. Algrafy, N.A. Kattan, A. Laref, A.S. Bhatti, Mater. Sci. Semicond. Process. 121, 105313 (2021)

    Article  CAS  Google Scholar 

  45. Y.W. Hsiao, J.Y. Song, H.T. Wu, C.C. Leu, C.F. Shih, Nanomaterials 12(1), 157 (2022)

    Article  CAS  Google Scholar 

  46. C.H. Ng, T.S. Ripolles, K. Hamada, S.H. Teo, H.N. Lim, J. Bisquert, S. Hayase, Sci. Rep. 8(1), 1–9 (2018)

    Google Scholar 

  47. M. Ozaki, Y. Ishikura, M.A. Truong, J. Liu, I. Okada, T. Tanabe, S. Sekimoto, T. Ohtsuki, Y. Murata, R. Murdey, A. Wakamiya, J. Mater. Chem. A 7(28), 16947–16953 (2019)

    Article  CAS  Google Scholar 

  48. S.T. Umedov, D.B. Khadka, M. Yanagida, A. Grigorieva, Y. Shirai, Sol. Energy Mater. Sol. Cells 230, 111180 (2021)

    Article  CAS  Google Scholar 

  49. H. Zhang, R. Yuan, M. Jin, Z. Zhang, Y. Yu, W. Xiang, X. Liang, J. Eur. Ceram. Soc. 40(1), 4–102 (2020)

    Google Scholar 

  50. B. Yuan, N. Li, J. Liu, F. Xu, C. Li, F. Juan, H. Yu, C. Li, B. Cao, J. Mater. Sci: Mater. Electron. 31(23), 21154–21167 (2020)

    CAS  Google Scholar 

  51. Y. Kumar, K.C. Sanal, T.D. Perez, N.R. Mathews, X. Mathew, Opt. Mater. 92, 431 (2019)

    Google Scholar 

  52. J. Yu, W. Li, K. Zhang, X. Han, J. Mater. Sci.: Mater. Electron. 32(16), 20936–20945 (2021)

    CAS  Google Scholar 

  53. H. Guo, Y. Pei, J. Zhang, C. Cai, K. Zhou, Y. Zhu, J. Mater. Chem. C 7(36), 11234–11243 (2019)

    Article  CAS  Google Scholar 

  54. Y. Guo, X. Yin, J. Liu, W. Que, J. Mater. Chem. A 7(32), 19008–19016 (2019)

    Article  CAS  Google Scholar 

  55. J.H. Zhang, X.D. Hao, X. Wang, Z.Z. Su, J.X. Luo, H.Y. Wu, F.X. Lin, J. Solid State Chem. 285, 121246 (2020)

    Article  CAS  Google Scholar 

  56. K.K. Kondamareddy, H. Bin, D. Lu, P. Kumar, R.K. Dwivedi, V.O. Pelenovich, X.Z. Zhao, W. Gao, D. Fu, Sci. Rep. 8(1), 1–12 (2018)

    Google Scholar 

  57. K. Umar, A. Aris, H. Ahmad, T. Parveen, J. Jaafar, Z.A. Majid, A. Reddy, J. Talib, J. Anal. Sci. Technol 7(1), 1–8 (2016)

    Article  Google Scholar 

  58. Z. Liu, H. Yang, J. Wang, Y. Yuan, K. Hills-Kimball, T. Cai, P. Wang, A. Tang, O. Chen, Nano Lett. 21(4), 1620–1627 (2021)

    Article  CAS  Google Scholar 

  59. Z. Zhang, Y. Liang, H. Huang, X. Liu, Q. Li, L. Chen, D. Xu, Angewandte Chem. Int. Edit. 58(22), 7263–7267 (2019)

    Article  CAS  Google Scholar 

  60. B.M. Bresolin, P. Sgarbossa, D.W. Bahnemann, M. Sillanpaa, Sep. Purif. Technol. 251, 117320 (2020)

    Article  CAS  Google Scholar 

  61. C. Zheng, H. Yang, J. Mater. Sci.: Mater. Electron. 29(11), 9291–9300 (2018)

    CAS  Google Scholar 

  62. B. Palanivel, A. Mani, ACS Omega 5, 19747–19759 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to R. Muralidharan.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 166 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, R., Vinodhini, S.P., Arulmozhi, R. et al. Influence of halogen substitution in double perovskite Rb2Sn(Br0.75I0.25)6 on the photocatalytic degradation of methylene blue dye under visible light irradiation. J Mater Sci: Mater Electron 34, 151 (2023). https://doi.org/10.1007/s10854-022-09533-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09533-7

Navigation