Skip to main content
Log in

Boron substitution in LiAlO2 to facilitate densification and tune dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of low-permittivity LiAl1 − xBxO2 (0.01 ≤ x ≤ 0.10) ceramics were fabricated by a conventional solid-state reaction method and were characterized for their phase evolution, crystal structure, and dielectric properties. Single-phase LiAl1 − xBxO2 solid solutions were formed at a limited compositional range (x = 0.05) while the secondary phase Li2(BAlO4) companied at higher dopant contents. Boron substitution facilitated the sintering behavior and optimized the densification of LiAlO2, resulting in dense microstructures and improved dielectric properties. A composition with x = 0.075 exhibited a high quality factor (Q×f) of 40,288 GHz along with a low relative permittivity (εr) of 6.3 and a temperature coefficient of resonance frequency (τf) of – 191 ppm/oC. All results indicate that the LiAl1 − xBxO2 ceramics can be a promising candidate material in the application of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. X.Q. Song, K. Du, X.Z. Zhang et al., Crystal structure, phase composition and microwave dielectric properties of Ca3MSi2O9 ceramics. J. Alloys Compd. 750, 996–1002 (2018)

    Article  CAS  Google Scholar 

  2. Y. Xiong, H.Y. Xie, Z.G. Rao et al., Compositional modulation in ZnGa2O4 via Zn2+/Ge4+ co-doping to simultaneously lower sintering temperature and improve microwave dielectric properties. J. Adv. Ceram. 10, 1360–1370 (2021)

    Article  CAS  Google Scholar 

  3. C.C. Li, C.Z. Yin, J. Khaliq et al., Ultralow-temperature synthesis and densification of Ag2CaV4O12 with improved microwave dielectric performances. ASC Sustainable Chem. Eng. 9, 14461–14469 (2021)

    Article  CAS  Google Scholar 

  4. H. Zheng, G.D.C. Gyorgyfalva, I.M. Reaney, Microstructure and microwave properties of CaTiO3-LaGaO3 solid solutions. J. Mater. Sci. 40, 5207–5214 (2005)

    Article  CAS  Google Scholar 

  5. P.L. Wise, I.M. Reaney, W.E. Lee et al., Structure-microwave property relations in (SrxCa(1– x))n+1TinO3n+ 1. J. Eur. Ceram. Soc. 21, 1723–1726 (2001)

    Article  CAS  Google Scholar 

  6. Y. Konishi, Novel dielectric wave-guide components-microwave applications of new ceramic materials. Proc. IEEE. 7(9), 726–740 (1991)

    Article  Google Scholar 

  7. M.L. Calzada, L. Delolmo, Piezoelectric behavior of pure PbTiO3 ceramics. Ferroelectr. 123, 233–241 (1991)

    Article  CAS  Google Scholar 

  8. W. Lei, W.Z. Lu, J.H. Zhu et al., Modification of ZnAl2O4-based low-permittivity microwave dielectric ceramics by adding 2MO-TiO2 (M = co, mg, and Mn). J. Am. Ceram. Soc. 2, 233–241 (1991)

    Google Scholar 

  9. A.V. Trukhanov, A.L. Kozlovskiy, A.E. Ryskulov et al., Control of structural parameters and thermal conductivity of BeO ceramics using heavy ion irradiation and post-radiation annealing. Ceram. Int. 45, 15412–15416 (2019)

    Article  CAS  Google Scholar 

  10. C.X. Hu, P. Liu, Preparation and microwave dielectric properties of SiO2 ceramics by aqueous Sol-Gel technique. J. Alloys Compd. 559, 129–133 (2013)

    Article  CAS  Google Scholar 

  11. H. Ohsato, T. Tsunooka, M. Ando et al., Millimeter-wave dielectric ceramics of alumina and forsterite with high quality factor and low dielectric constant. J. Korean Chem. Soc. 40, 350–353 (2003)

    CAS  Google Scholar 

  12. H.Z. Zuo, X.L. Tang, H.W. Zhang et al., Low-dielectric-constant LiAlO2 ceramics combined with LBSCA glass for LTCC applications. Ceram. Int. 43, 8951–8955 (2017)

    Article  CAS  Google Scholar 

  13. L.X. Li, S. Li, Z. D. Gao. Effects of B2O3 additive on sintering behavior and microwave dielectric properties of LaAlO3-doped MgTiO3-CaTiO3 ceramics. J. Mater. Sci. - Mater. Electron. 26, 5037–5042 (2015)

    Article  CAS  Google Scholar 

  14. C.Z. Yin, H.C. Xiang, C.C. Li et al., Low-temperature sintering and thermal stability of Li2GeO3‐based microwave dielectric ceramics with low permittivity. J. Am. Ceram. Soc. 101, 4608–4614 (2018)

    Article  CAS  Google Scholar 

  15. B. Hakki, P. Coleman, A dielectric resonator method of measuring inductive capacitance in the millimeter range. IEEE Trans. Microw. Theory Tech. 8, 401–410 (1960)

    Article  Google Scholar 

  16. N.X. Xu, J.H. Zhou, H. Yang et al., Structural evolution and microwave dielectric properties of MgO-LiF co-doped Li2TiO3 ceramics for LTCC applications. Ceram. Int. 40, 15191–15198 (2014)

    Article  CAS  Google Scholar 

  17. X. Zhang, Z.H. Jiang, B. Tang et al., A new series of low-loss multicomponent oxide microwave dielectrics with a rock salt structure: Li5MgABO8. Ceram. Int. 46, 10332–10340 (2020) (A = Ti, Sn; B = Nb, Ta)

    Article  CAS  Google Scholar 

  18. G.D. Chryssikos, M.S. Bitsis, J.A. Kapoutsis, Vibrational investigation of lithium metaborate-metaaluminate glasses and crystals. J. Non-Cryst Solids 217, 278–290 (1997)

    Article  CAS  Google Scholar 

  19. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sec. A: Found. Crystallogr. 32(5), 751–767 (1976)

    Article  Google Scholar 

  20. E. Bétourné, M. Touboul, Crystallographic data about hydrated and anhydrous lithium monoborates. Powder Diffr 12, 155–159 (1997)

    Article  Google Scholar 

  21. D.M. Toebbens, N. Stuesser, K. Knorr et al., Calculated from ICSD using POWD-12++. In Mater sci 378, 288 (2001)

    Google Scholar 

  22. X.X. Gang, W.Z. Yin, W.X. Wei et al., Preparation of γ-LiAlO2 green bodies through the gel-casting process. Ceram. Int. 35, 1429–1434 (2009)

    Article  Google Scholar 

  23. E.S. Kim, B.S. Chun, R. Freer et al., Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: ca, Pb, Ba; B6+: Mo, W) ceramics. J. Eur. Ceram. Soc. 30, 1731–1736 (2010)

    Article  CAS  Google Scholar 

  24. K. Kakimoto, T. Tsunooka, H. Osato et al., Zero temperature coefficient τf and sinterability of dorsterite ceramics by rutile addition. J. Biochem. 116, 315–320 (2004)

    Google Scholar 

  25. B. Liu, C.C. Hu, Y.H. Huang et al., Crystal structure, infrared reflectivity spectra and microwave dielectric properties of CaAl2O4 ceramics with low permittivity. J. Alloys Compd. 791, 1033–1037 (2019)

    Article  CAS  Google Scholar 

  26. H.C. Xiang, C.C. Li, Y. Tang et al., Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6 (M = Mo, W) and their chemical compatibility with metal electrodes. J. Eur. Ceram. Soc. 37, 3959–3963 (2017)

    Article  CAS  Google Scholar 

  27. S. George, P.S. Anjana, V.N. Deepu et al., Low-temperature sintering and microwave dielectric properties of Li2MgSiO4 ceramics. J. Am. Ceram. Soc. 92, 1244–1249 (2009)

    Article  CAS  Google Scholar 

  28. C.C. Li, H.C. Xiang, M.Y. Xu et al., Li2AGeO4 (A = zn, mg): two novel low-permittivity microwave dielectric ceramics with olivine structure. J. Eur. Ceram. Soc. 38, 1524–1528 (2018)

    Article  Google Scholar 

  29. S.P. Wu, Q. Ma, Synthesis characterization and microwave dielectric properties of Zn2GeO4 ceramics. J. Alloys Compd. 567, 40–46 (2013)

    Article  CAS  Google Scholar 

  30. X.H. Ma, S.H. Kweon, M. Im et al., Low-temperature sintering and microwave dielectric properties of B2O3-added ZnO-deficient Zn2GeO4 ceramics for advanced substrate application. J. Eur. Ceram. Soc. 38, 4682–4688 (2018)

    Article  CAS  Google Scholar 

  31. T.Y. Qin, C.W. Zhong, Y. Shang et al., Effects of LiF on crystal structure, cation distributions and microwave dielectric properties of MgAl2O4. J. Alloys Compd. 886, 161278 (2021)

    Article  CAS  Google Scholar 

  32. C.W. Zheng, S.Y. Wu, X.M. Chen et al., Modification of MgAl2O4 microwave dielectric ceramics by zn substitution. J. Am. Ceram. Soc. 90, 1483–1486 (2007)

    Article  CAS  Google Scholar 

  33. S. Takahashi, A. Kan, H. Ogawa, Microwave dielectric properties and crystal structures of spinel-structured MgAl2O4 ceramics synthesized by a molten-salt method. J. Eur. Ceram. Soc. 37, 1001–1006 (2017)

    Article  CAS  Google Scholar 

  34. O.Y. Xin, S.P. Wu, Z.L. Wang et al., Synthesis and microwave dielectric properties of 2ZnO·3B2O3-doped ZnAl2O4 low-permittivity ceramics. J. Alloys Compd. 644, 242–248 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Chunchun Li gratefully acknowledges the Fundamental Research Funds of Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices (AFMD-KFJJ-21210) and the financial support from the Natural Science Foundation of China (No. 62061011) and Guangxi Key Laboratory Fund of Embedded Technology and Intelligent System (No. 2020-1-6).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by XC, DC, and FL. The first draft of the manuscript was written by XC and all authors commented on previous versions of the manuscript. LL, QS, and CL read and approved the final manuscript.

Corresponding author

Correspondence to Chunchun Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

We would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and is not under consideration for publication elsewhere, in whole or in part.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Chen, D., Li, F. et al. Boron substitution in LiAlO2 to facilitate densification and tune dielectric properties. J Mater Sci: Mater Electron 34, 145 (2023). https://doi.org/10.1007/s10854-022-09530-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09530-w

Navigation