Skip to main content
Log in

Electro and magneto dual response of TiO2@Fe3O4 core–shell composite nanoparticle

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, electro and magneto dual response of TiO2@Fe3O4 composite nanoparticles is realized by situ-generating Fe3O4, which was synthesized by FeCl3 and FeSO4, on rose-like TiO2 pore in virtue of facile hydrothermal reaction. Morphology, structure and physical properties, such as dielectric constant and magnetic conductivity, of the TiO2@Fe3O4 composite particles were characterized. The particles were dispersed in hydrous elastomer to measure their electro and magneto responsive property by the scanning electron microscopy of micro structure of hydrous elastomer and dynamic mechanical analysis that reflected by the sensitivity of the increase in storage modulus (f = ∆G/G) of the hydrous elastomer cured in the absence/presence of external field. The one of the TiO2@Fe3O4 particles consisting of the ratio of TiO2:Fe3O4 to 2:1 has the highest electro and magneto dual responsive effect that reaches 62%, which is far higher than TiO2 with only 15%. This work provides a new substance shows the excellent performance of electro and magneto dual response to applied in smart material field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. Raw data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. W.M. Winslow, J. Appl. Phys. 20, 1137 (1949). https://doi.org/10.1063/1.1698285

    Article  CAS  Google Scholar 

  2. J. Rabinow, Electr. Eng. 67, 1167 (1948)

    Article  Google Scholar 

  3. T. Hao, Adv. Mater. 13, 1847 (2001)

    Article  CAS  Google Scholar 

  4. T.C. Halsey, Adv. Mater. 5, 711 (1993). https://doi.org/10.1002/adma.19930051004

    Article  CAS  Google Scholar 

  5. S.C. Guerrero, C.T. Lara, R.E. Jimenez, M. Raşa, U.S. Schubert, Adv. Mater. 19, 1740 (2007). https://doi.org/10.1002/adma.200700302

    Article  CAS  Google Scholar 

  6. W. Sun, J. Jung, J. Seok, J. Intell. Mater. Syst. Struct. 27, 959 (2016). https://doi.org/10.1177/1045389X15590274

    Article  CAS  Google Scholar 

  7. K. Koyanagi, Y. Kakinuma, H. Anzai, T. Yamaguchi, Adv. Robot. 24(14), 1963 (2010). https://doi.org/10.1163/016918610X529066

    Article  Google Scholar 

  8. J.R. Davidson, H.I. Krebs, IEEE ASME Trans. Mechatron. 23(5), 2156 (2018)

    Article  Google Scholar 

  9. Y.D. Liu, H.J. Choi, Soft Matter 8(48), 11961 (2012)

    Article  CAS  Google Scholar 

  10. A. Olszak, K. Osowski, Z. Kęsy, A. Kęsy, J. Intell. Mater. Syst. Struct. 30(4), 649 (2019). https://doi.org/10.1177/1045389X18818780

    Article  Google Scholar 

  11. S.W. Chen, R. Li, P.F. Du, H.W. Zheng, D.Y. Li, Front. Mater. 6, 68 (2019)

    Article  Google Scholar 

  12. Y.Z. Dong, Y. Seo, H. Choi, Soft Matter 15, 3473 (2019). https://doi.org/10.1039/C9SM00210C

    Article  CAS  Google Scholar 

  13. W.J. Wen, X.X. Huang, P. Sheng, Appl. Phys. Lett. 85(2), 299 (2004). https://doi.org/10.1063/1.1772859

    Article  CAS  Google Scholar 

  14. Y.C. Cheng, J.J. Guo, X.H. Liu, A.H. Sun, G.J. Xu, P. Cui, J. Mater. Chem. 21(13), 5051 (2011). https://doi.org/10.1039/C0JM03378B

    Article  CAS  Google Scholar 

  15. G.C. Zhang, X.H. Zhao, X. Jin, Z.J. Zhao, Y.M. Ren, L.M. Wang, Y.D. Liu, H.J. Choi, J. Mol. Liq. 338, 116696 (2021). https://doi.org/10.1016/j.molliq.2021.116696

    Article  CAS  Google Scholar 

  16. S. Lee, J. Lee, S.H. Hwang, J. Yun, J. Jang, ACS Nano 9(5), 4939 (2015). https://doi.org/10.1021/nn5068495

    Article  CAS  Google Scholar 

  17. K. He, Q.K. Wen, C.W. Wang, B.X. Wang, S.S. Yu, C.C. Hao, K.Z. Chen, Chem. Eng. J. 349, 416 (2018). https://doi.org/10.1016/j.cej.2018.05.102

    Article  CAS  Google Scholar 

  18. W.L. Zhang, H.J. Choi, Chem. Commun. 47, 12286 (2011). https://doi.org/10.1039/C1CC14983K

    Article  CAS  Google Scholar 

  19. Q. Lu, J.H. Lee, J.H. Lee, H.J. Choi, Materials. 14, 2900 (2021). https://doi.org/10.3390/ma14112900

    Article  CAS  Google Scholar 

  20. H.S. Liang, H. Xing, Z.H. Ma, H.J. Wu, Carbon 183, 138–149 (2021). https://doi.org/10.1016/j.carbon.2021.07.002

    Article  CAS  Google Scholar 

  21. J. Aboudi, Smart Mater. Struct. 8(1), 106 (1999)

    Article  Google Scholar 

  22. W.L. Zhang, Y. Tian, Y.D. Liu, Z.Q. Song, J.Q. Liu, H.J. Choi, RSC Adv. 6, 77925 (2016)

    Article  CAS  Google Scholar 

  23. C.M. Yoon, Y. Jang, S. Lee, J. Jang, J. Mater. Chem. C. 6, 10241 (2018)

    Article  CAS  Google Scholar 

  24. Y.P. Lu, L.X. Gao, L.J. Wang, Z.Y. Xie, M.X. Gao, W.Q. Zhang, Mater. Sci. Eng. B. 2(21), 54 (2017). https://doi.org/10.1016/j.mseb.2017.04.001

    Article  CAS  Google Scholar 

  25. D.E. Park, H.S. Chae, H.J. Choi, A. Maity, J. Mater. Chem. C. 3, 3150 (2015). https://doi.org/10.1039/C5TC00007F

    Article  CAS  Google Scholar 

  26. S. Lee, J. Noh, S. Hong, Y.K. Kim, J. Jang, Chem. Mater. 28, 2624 (2016). https://doi.org/10.1021/acs.chemmater.5b04936

    Article  CAS  Google Scholar 

  27. J. Noh, S. Hong, C.M. Yoon, S. Lee, J. Jang, Chem. Comm. 53, 6645 (2017). https://doi.org/10.1039/C7CC02197F

    Article  CAS  Google Scholar 

  28. B. Sim, H.S. Chae, H.J. Choi, Express Polym. Lett. 9(8), 736 (2015)

    Article  CAS  Google Scholar 

  29. F.F. Fang, Y.D. Liu, H.J. Choi, Colloid Polym. Sci. 291, 1781 (2013)

    Article  CAS  Google Scholar 

  30. H.M. Kim, S.H. Kang, H.J. Choi, Colloids Surf. A Physicochem. Eng. Asp. 626, 127079 (2021). https://doi.org/10.1016/j.colsurfa.2021.127079

    Article  CAS  Google Scholar 

  31. J.G. Yu, Y.R. Su, B. Cheng, Adv. Funct. Mater. 17(12), 1984 (2007). https://doi.org/10.1002/adfm.200600933

    Article  CAS  Google Scholar 

  32. P. Hu, D.F. Hou, Y.W. Wen, B. Shan, C.J. Chen, Y.H. Huang, X.L. Hu, Nanoscale 7(5), 1963 (2015). https://doi.org/10.1039/C4NR06580H

    Article  CAS  Google Scholar 

  33. C.K. Chen, S.X. Zhao, Q.L. Lu, K. Luo, X.H. Zhang, C.W. Nan, Dalton Trans. 46(15), 5017 (2017). https://doi.org/10.1039/C7DT00724H

    Article  CAS  Google Scholar 

  34. H.S. Liang, H. Xing, M. Qin, H.J. Wu, Compos. Part A Appl. Sci. Manuf. 135, 105959 (2020). https://doi.org/10.1016/j.compositesa.2020.105959

    Article  CAS  Google Scholar 

  35. K. He, Q.K. Wen, C.W. Wang, B.X. Wang, S.S. Yu, C.C. Haoa, K.Z. Chen, Soft Matter 13(43), 7879 (2017). https://doi.org/10.1039/C7SM01422H

    Article  CAS  Google Scholar 

  36. J.H. Wang, G.W. Chen, J.B. Yin, C.R. Luo, X.P. Zhao, Smart Mater. Struct. 26, 035036 (2017)

    Article  Google Scholar 

  37. W. Liu, Z.Y. Xie, Y.P. Lu, M.X. Gao, W.Q. Zhang, L.X. Gao, RSC Adv. 9(22), 12404 (2019). https://doi.org/10.1039/C9RA01174A

    Article  CAS  Google Scholar 

  38. C.L. Zhu, M.L. Zhang, Y.J. Qiao, G. Xiao, F. Zhang, Y.J. Chen, J. Phys. Chem. C. 114(39), 16229 (2010). https://doi.org/10.1021/jp104445m

    Article  CAS  Google Scholar 

  39. R. Sahoo, A. Pal, T. Pal, J. Mater. Chem. A. 4, 17440 (2016). https://doi.org/10.1039/C6TA07467G

    Article  CAS  Google Scholar 

  40. Z.M. Dang, S.S. Shu, J.W. Zha, H.T. Song, S.T. Li, Phys. Status Solidi A. 207(3), 739 (2010). https://doi.org/10.1002/pssa.200925471

    Article  CAS  Google Scholar 

  41. Y.J. Chen, P. Gao, C.L. Zhu, R.X. Wang, L.J. Wang, M.S. Cao, X.Y. Fang, J. Appl. Phys. 106(5), 054303 (2009). https://doi.org/10.1063/1.3204958

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Shaanxi Science and Technology Department, Key Research and Development Project (Grant No. 2017GY-124), the projects of the Xi’an Modern Institute of Chemistry (Contract Nos. 204-J-2020-1783) and Fundamental Research Funds for the Central Universities under Grant (Grant No. GK202103030).

Author information

Authors and Affiliations

Authors

Contributions

LG: Conceived the ideas, designed the synthesis, supervised, interpreted the results, re-viewed and wrote the manuscript. HZ: Prepared and revised of the manuscript. WL: Interpreted the results, made the manuscript. SZ: Prepared Sample, experimented, collected the data. ZX: Analyzed the results, supervised, reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lingxiang Gao or Zunyuan Xie.

Ethics declarations

Conflict of interest

There are no conflicts to declare. With the consent of all the authors, we made corrections.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Zhang, H., Liu, W. et al. Electro and magneto dual response of TiO2@Fe3O4 core–shell composite nanoparticle. J Mater Sci: Mater Electron 34, 139 (2023). https://doi.org/10.1007/s10854-022-09529-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09529-3

Navigation