Skip to main content
Log in

Effect of temperature on dielectric properties of cobalt-doped SnSe polycrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the hydrothermal synthesis of cobalt-doped tin selenide (SnSe) is reported. The phases of the samples were obtained as single phase using X-ray diffraction. 3D flower-like morphology is revealed up to x = 0.05 of Co, and thereafter, they transformed into a rod-like shape for higher concentrations as revealed by scanning electron microscope. The temperature-dependent dielectric properties and electrical modulus studies were investigated in a frequency range of 100 Hz–12 MHz for temperatures 323–523 K. Large values of dielectric constant (of the order of 108–109) in the low-frequency region and small values of dielectric constant (ε' ≈ 50–1400) in the high-frequency region are obtained at various temperatures for Co-doped SnSe. The temperature dependence of frequency exponent ‘s’ indicates that the correlated barrier hopping is the probable mechanism for the hopping of charge carriers. The responses in the dielectric studies show the applications of the material in microelectronic and dielectric device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. M. Kumar, S. Rani, Y. Singh, K.S. Gour, V.N. Singh, RSC Adv. 11, 6477 (2021)

    Article  CAS  Google Scholar 

  2. W. Shi, M. Gao, J. Wei, J. Gao, C. Fan, E. Ashalley, H. Li, Z. Wang, Adv. Sci. 5, 4 (2018)

    Google Scholar 

  3. S. Kundu, S.I. Yi, C. Yu, Appl. Surf. Sci. 459, 376 (2018)

    Article  CAS  Google Scholar 

  4. V. Brune, N. Raydan, A. Sutorius, F. Hartl, B. Purohit, S. Gahlot, P. Bargiela, L. Burel, M. Wilhelm, C. Hegemann, U. Atamtürk, S. Mathur, S. Mishra, Dalt. Trans. 50, 17346 (2021)

    Article  CAS  Google Scholar 

  5. F. Davitt, K. Rahme, S. Raha, S. Garvey, M. Roldan-Gutierrez, A. Singha, S.L.Y. Chang, S. Biswas, J.D. Holmes, Nanotechnology 33, 13 (2022)

    Article  Google Scholar 

  6. G.K. Solanki, N.N. Gosai, K.D. Patel, Res. J. Chem. Sci. 5, 1 (2015)

    CAS  Google Scholar 

  7. D. Properties, T. Crystals, G.K. Solanki, K.D. Patel, N.N. Gosai and PRB, Res. J. Chem. Sci. 2, 43 (2012)

    Google Scholar 

  8. P.M.P. Suguna, D. Mangalamj, S.A.K. Narayandass, Phys. Status Sol. 405, 155 (1996)

    Google Scholar 

  9. S. Sakrani, Z. Othaman, K. Deraman, Y. Wahab, J. Fiz, UTM. 3, 99 (2008)

    Google Scholar 

  10. M. Nerella, M.B. Suresh, S. Bathulapalli, J. Mater. Sci. Mater. Electron. 32, 4347 (2021)

    Article  CAS  Google Scholar 

  11. M. Nerella, M.B. Suresh, S. Bathulapalli, J. Mater. Sci. Mater. Electron. 33, 2869 (2022)

    Article  CAS  Google Scholar 

  12. A. Rajeh, H.M. Ragab, M.M. Abutalib, J. Mol. Struct. 1217, 128447 (2020)

    Article  CAS  Google Scholar 

  13. M. Luo, Y. Xu, Y. Shen, Results Phys. 17, 103126 (2020)

    Article  Google Scholar 

  14. M. Luo, Y.E. Xu, J. Supercond. Nov. Magn. 33, 2801 (2020)

    Article  CAS  Google Scholar 

  15. J. Lu, L. Guo, G. Xiang, Y. Nie, X. Zhang, J. Electron. Mater. 49, 290 (2020)

    Article  CAS  Google Scholar 

  16. S. Liu, M. Lan, G. Li, Y. Yuan, B. Jia, Q. Wang, Ceram. Int. 46, 16578 (2020)

    Article  CAS  Google Scholar 

  17. X.L. Wang, W. Li, T.X. Wang, X.Q. Dai, Phys. E Low-Dimensional Syst. Nanostructures 75, 106 (2016)

    Article  CAS  Google Scholar 

  18. A.A.H. El-Bassuony, W.M. Gamal, H.K. Abdelsalam, J. Mater. Sci. Mater. Electron. 33, 16219 (2022)

    Article  CAS  Google Scholar 

  19. M.M. Abutalib, A. Rajeh, Polym. Test. 91, 106803 (2020)

    Article  CAS  Google Scholar 

  20. A.A.H. El-Bassuony, J. Mater. Sci. Mater. Electron. 28, 14489 (2017)

    Article  CAS  Google Scholar 

  21. M. Nerella, M.B. Suresh, S. Bathulapalli, Phys. B Condens. Matter 627, 413534 (2022)

    Article  CAS  Google Scholar 

  22. A.Y. Kuznetsov, R. MacHado, L.S. Gomes, C.A. Achete, V. Swamy, B.C. Muddle, V. Prakapenka, Appl. Phys. Lett. 94, 2 (2009)

    Article  Google Scholar 

  23. S. Riaz, Sajid-ur-Rehman, M. Abutalib, S. Naseem, J. Electron. Mater. 45, 5185 (2016)

    Article  CAS  Google Scholar 

  24. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  25. M.F. Afsar, A. Jamil, M.A. Rafiq, Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 4 (2017)

    Article  Google Scholar 

  26. M. Ahmad, M.A. Rafiq, K. Rasool, Z. Imran, M.M. Hasan, J. Appl. Phys. 113, 4 (2013)

    Article  Google Scholar 

  27. A. Jamil, S.S. Batool, F. Sher, M.A. Rafiq, AIP Adv. 6, 5 (2016)

    Article  Google Scholar 

  28. M. Ahmad, M.A. Rafiq, M.M. Hasan, J. Appl. Phys. 133702, 114 (2013)

    Google Scholar 

  29. H.A. Hashem, S. Abouelhassan, Chinese. J. Phys. 43, 955 (2005)

    CAS  Google Scholar 

  30. S. Sagadevan, K. Pal, E. Hoque, Z.Z. Chowdhury, J. Mater. Sci. Mater. Electron. 28, 10902 (2017)

    Article  CAS  Google Scholar 

  31. T. Arokiya Mary, A.C. Fernandez, P. Sakthivel, J.G.M. Jesudurai, J. Mater. Sci. Mater. Electron. 27, 11041 (2016)

    Article  CAS  Google Scholar 

  32. K. Khurana, N. Jaggi, J. Mater. Sci. Mater. Electron. 31, 10334 (2020)

    Article  CAS  Google Scholar 

  33. Y.J. Wong, J. Hassan, M. Hashim, J. Alloys Compd. 571, 138 (2013)

    Article  CAS  Google Scholar 

  34. S. Suresh, C. Arunseshan, Appl. Nanosci. 4, 179 (2014)

    Article  CAS  Google Scholar 

  35. S. Nasri, M. Megdiche, M. Gargouri, Ceram. Int. 42, 943 (2016)

    Article  CAS  Google Scholar 

  36. S.R. Elliott, Philos. Mag. 36, 1291 (1977)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge ‘The Director, ARCI, Hyderabad’ for the help in dielectric measurements.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MN was involved in conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization, writing the original draft, software, resources and writing—reviewing and editing. NM and MBS contributed to data curation, formal analysis, visualization, validation and writing—reviewing and editing. SB was responsible for supervision, funding acquisition, resources, conceptualization, investigation, methodology, validation, visualization and writing—reviewing and editing.

Corresponding author

Correspondence to Manjula Nerella.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1878 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nerella, M., Macherla, N., Suresh, M.B. et al. Effect of temperature on dielectric properties of cobalt-doped SnSe polycrystals. J Mater Sci: Mater Electron 34, 120 (2023). https://doi.org/10.1007/s10854-022-09521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09521-x

Navigation