Skip to main content
Log in

Enhanced optical and electronic properties of chlorobenzene-assisted perovskite CH3NH3PbI3−xClx film incorporated in p-i-n solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Perovskite solar cells (PSCs) based on methylammonium lead mixed halide (CH3NH3PbI3−xClx) are highly promising for next generation photovoltaic technology owing to their low-cost facile fabrication and superior performance. The power conversion efficiency (PCE) and stability of PSCs are immensely influenced by the crystallinity, homogeneity, uniformity, and defect density of the perovskite films. This work highlights an efficient solution processing route utilizing Chlorobenzene (CB) as an antisolvent during the thin film growth process. It is demonstrated that the planar perovskite film prepared by the CB-modified method yields a homogeneous deposition with a significant reduction in pin holes and defect density. Inverted planar heterojunction PSCs fabricated by this method exhibit a higher open circuit voltage (Voc) and reduced non-radiative recombination as compared to that obtained in PSCs prepared without CB. The improved film quality results in a huge enhancement of nearly 40% in the PCE. In addition, a significant reduction in the charge carrier's transfer resistance from 2442 to 550 Ω was observed while the defect density was suppressed from 24.6 × 1016 to 11.1 × 1016 cm−3. These CB-modified PSCs also exhibit improved stability in the ambient conditions. This approach would pave the way for the fabrication of low-temperature processed inverted planar PSCs with improved performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

We confirm that this work is original and has not been published elsewhere. All data included in this study are available upon request by contact with the corresponding author.

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  CAS  Google Scholar 

  2. M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovolt. Res. Appl. 29, 3 (2021)

    Article  Google Scholar 

  3. S. Colella et al., Chem. Mater. 25, 4613 (2013)

    Article  CAS  Google Scholar 

  4. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342, 341 (2013)

    Article  CAS  Google Scholar 

  5. L. Ma, D. Guo, M. Li, C. Wang, Z. Zhou, X. Zhao, F. Zhang, Z. Ao, Z. Nie, Chem. Mater. 31, 8515 (2019)

    Article  CAS  Google Scholar 

  6. A. Guerrero, E.J. Juarez-Perez, J. Bisquert, I. Mora-Sero, G. Garcia-Belmonte, Appl. Phys. Lett. 105, 133902 (2014)

    Article  Google Scholar 

  7. J. You, L. Meng, Z. Hong, G. Li, Y. Yang, Organic-Inorganic Halide Perovskite Photovoltaics (Springer, New York, 2016), p.307

    Book  Google Scholar 

  8. N. Suresh Kumar, K. Chandra Babu Naidu, J. Materiom. 7, 940 (2021)

    Article  Google Scholar 

  9. M. Xiao et al., Angew. Chem. Int. Ed. 53, 9898 (2014)

    Article  CAS  Google Scholar 

  10. M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013)

    Article  CAS  Google Scholar 

  11. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater. 13, 897 (2014)

    Article  CAS  Google Scholar 

  12. G. Eperon, V. Burlakov, P. Docampo, A. Goriely, H. Snaith, Adv. Funct. Mater. 24, 151 (2014)

    Article  CAS  Google Scholar 

  13. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)

    Article  CAS  Google Scholar 

  14. A. Pascoe, M. Yang, N. Kopidakis, K. Zhu, M. Reese, G. Rumbles, M. Fekete, N. Duffy, C. Bing, Nano Energy 22, 439 (2016)

    Article  CAS  Google Scholar 

  15. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)

    Article  CAS  Google Scholar 

  16. M. Wang, H. Wang, W. Li, X. Hu, K. Sun, Z. Zang, J. Mater. Chem. A 7, 26421 (2019)

    Article  CAS  Google Scholar 

  17. J. Feng et al., Adv. Mater. 30, 1801418 (2018)

    Article  Google Scholar 

  18. Y. Numata, A. Kogo, Y. Udagawa, H. Kunugita, K. Ema, Y. Sanehira, T. Miyasaka, ACS Appl. Mater. Interfaces 9, 18739 (2017)

    Article  CAS  Google Scholar 

  19. J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei, H. Bin, Z.-G. Zhang, Y. Li, S. Liu, Adv. Energy Mater. 8, 1701757 (2018)

    Article  Google Scholar 

  20. X. Jia, Z. Hu, J. Xu, L. Huang, J. Zhang, J. Zhang, Y. Zhu, Appl. Phys. Lett. 111, 243902 (2017)

    Article  Google Scholar 

  21. H.-C. Lin, L.-Y. Chen, T.-H. Lin, Mater. Chem. Phys. 259, 124032 (2021)

    Article  CAS  Google Scholar 

  22. Y.H. Lee, J. Luo, R. Humphry-Baker, P. Gao, M. Grätzel, M.K. Nazeeruddin, Adv. Funct. Mater. 25, 3925 (2015)

    Article  CAS  Google Scholar 

  23. V. Arivazhagan, J. Xie, Z. Yang, P. Hang, M.M. Parvathi, K. Xiao, C. Cui, D. Yang, X. Yu, Sol. Energy 181, 339 (2019)

    Article  CAS  Google Scholar 

  24. M.M. Tavakoli, A. Simchi, X. Mo, Z. Fan, Mater. Chem. Front. 1, 1520 (2017)

    Article  CAS  Google Scholar 

  25. H. Li, Y. Xia, C. Wang, G. Wang, Y. Chen, L. Guo, D. Luo, S. Wen, ACS Appl. Mater. Interfaces 11, 34989 (2019)

    Article  CAS  Google Scholar 

  26. M. Kong, H. Hu, K. Egbo, B. Dong, L. Wan, S. Wang, Chin. Chem. Lett. 30, 1325 (2019)

    Article  CAS  Google Scholar 

  27. W. Chen et al., Adv. Funct. Mater. 29, 1808855 (2019)

    Article  Google Scholar 

  28. K.-M. Lee, C.-J. Lin, B.-Y. Liou, S.-M. Yu, C.-C. Hsu, V. Suryanarayanan, M.-C. Wu, Sol. Energy Mater. Sol. Cells 172, 368 (2017)

    Article  CAS  Google Scholar 

  29. X. Liu, C. Xu, E.-C. Lee, ACS Appl. Energy Mater. 3, 12291 (2020)

    Article  CAS  Google Scholar 

  30. S. Yoon, M.-W. Ha, D.-W. Kang, J. Mater. Chem. C 5, 10143 (2017)

    Article  CAS  Google Scholar 

  31. S. Tombe et al., Sol. Energy 163, 215 (2018)

    Article  CAS  Google Scholar 

  32. M. Spalla, L. Perrin, E. Planès, M. Matheron, S. Berson, L. Flandin, Energies 13, 1927 (2020)

    Article  CAS  Google Scholar 

  33. N. Yantara, F. Yanan, C. Shi, H.A. Dewi, P.P. Boix, S.G. Mhaisalkar, N. Mathews, Chem. Mater. 27, 2309 (2015)

    Article  CAS  Google Scholar 

  34. S.T. Williams, F. Zuo, C.-C. Chueh, C.-Y. Liao, P.-W. Liang, A.K.Y. Jen, ACS Nano 8, 10640 (2014)

    Article  CAS  Google Scholar 

  35. H.M. Alishah et al., J. Mater. Sci.: Mater. Electron. 31, 7968 (2020)

    CAS  Google Scholar 

  36. Y. Long, A.J. Ward, A. Ruseckas, I.D. Samuel, Synth. Met. 216, 23 (2016)

    Article  CAS  Google Scholar 

  37. A. Guerrero, J. Bisquert, G. Garcia-Belmonte, Chem. Rev. 121, 14430 (2021)

    Article  CAS  Google Scholar 

  38. F.M. Casallas-Caicedo, E. Vera-López, J. Roa-Rojas, Physica B 607, 412865 (2021)

    Article  CAS  Google Scholar 

  39. B. Romero, G. del Pozo, B. Arredondo, D. Martín-Martín, E. Hernández-Balaguera, M. D. C. López González, Characterization of organic and perovskite solar cells by impedance spectroscopy (SPIE, 2019), Vol. 11095, SPIE Organic Photonics + Electronics

  40. F. Xia et al., ACS Appl. Mater. Interfaces 7, 13659 (2015)

    Article  CAS  Google Scholar 

  41. D. Moia et al., Energy Environ. Sci. 12, 1296 (2019)

    Article  CAS  Google Scholar 

  42. O. Almora, C. Aranda, E. Mas-Marzá, G. Garcia-Belmonte, Appl. Phys. Lett. 109, 173903 (2016)

    Article  Google Scholar 

  43. I. Zarazua, G. Han, P.P. Boix, S. Mhaisalkar, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, G. Garcia-Belmonte, J. Phys. Chem. Lett. 7, 5105 (2016)

    Article  CAS  Google Scholar 

  44. P.P. Boix, G. Garcia-Belmonte, U. Muñecas, M. Neophytou, C. Waldauf, R. Pacios, Appl. Phys. Lett. 95, 233302 (2009)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by DG, AKC, VP, SPK, PJ and CS. The first draft of the manuscript was written by DG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. K. Chauhan.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 131 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, D., Veerender, P., Sridevi, C. et al. Enhanced optical and electronic properties of chlorobenzene-assisted perovskite CH3NH3PbI3−xClx film incorporated in p-i-n solar cells. J Mater Sci: Mater Electron 34, 66 (2023). https://doi.org/10.1007/s10854-022-09516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09516-8

Navigation