Skip to main content
Log in

Improvement of electric and photoelectric properties of the Al/n-ZnO/p-Si/Al photodiodes by green synthesis method using chamomille flower extract

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, zinc oxide nanoparticles (ZnO-NPs) were synthesized by green and chemically using the sol–gel method. They compared in terms of current–voltage (I–V) characteristics. The synthesized plant-based (ZnO-NPs) were characterized via Fourier-transform infrared-spectroscopy, X-ray diffraction (XRD), and field-emission scanning electron microscopy. The XRD analysis determined the existence of pure-crystalline of (ZnO-NPs). Particle size distribution was routinely employed to characterize the green synthesized powders for size distribution, and the reactivity of green synthesized particles was found smaller than chemically synthesized particles. The I–V measurements of prepared thin films characteristics were compared both in the dark and ultraviolet spectrum (365 nm) under 100 mW/cm2. While the reverse-saturation current (I0), ideality factor (n), and zero-bias barrier-height (Φbo) values were extracted from the I–V data as 1.68 × 10–6 A, 2.43, 0.61 eV in dark and 7.27 × 10–5 A, 5.64, 0.50 eV under illumination for Al/(Bio-ZnO)/pSi and 7.99 × 10–6 A, 3.75, 0.57 eV in dark and 3.09 × 10–5 A, 5.71, 0.53 eV under illumination for Al/(Chemical-ZnO)/pSi photodiodes. These photodiodes' energy-dependent profiles were also obtained using the Card-Rhoderick method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. R. Rajendhiran, V. Deivasigamani, J. Palanisamy, S. Masan, S. Pitchaiya, Terminalia catappa and Carissa carandas assisted synthesis of TiO2 nanoparticles—a green synthesis approach. Mater. Today: Proc. 45(2), 2232–2238 (2020)

    Google Scholar 

  2. S.Z. Mohammadi, B. Lashkari, A. Khosravan, Green synthesis of Co3O4 nanoparticles by using walnut green skin extract as a reducing agent by using response surface methodology. Surf. Interfaces 23, 100970 (2021)

    Article  CAS  Google Scholar 

  3. S. Abinaya, H.P. Kavitha, M. Prakash, A. Muthukrishnaraj, Green Synthesis of magnesium oxide nanoparticles and its applications: a rewiev. Sustain. Chem. Pharm. 19, 100368 (2021)

    Article  CAS  Google Scholar 

  4. R. Resmi, J. Yoonus, B. Beena, A novel greener synthesis of ZnO nanoparticles from Nilgiriantus ciliantus leaf extract and evaluation of its biomedical applications”. Mater. Today: Proc. 2021, 2214–7853 (2021)

    Google Scholar 

  5. S. Kumar, W. Ahlawat, R. Kumar et al., Graphene, carbon nanotubes, zinc oxide, and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron. 70, 498–503 (2015)

    Article  CAS  Google Scholar 

  6. A.A. Gujel, M. Bandeira, C. Menti, D. Perondi, R. Guegan, M. Roesch-Ely, M. Giovanela, J.S. Crespo, Evaluation of vulcanization nanoactivators with low zinc content: characterization of zinc oxides, cure, physico-mechanical properties, Zn2+ release in water and cytotoxic effect of EPDM compositions. Polym Engin. Sci. 58, 1–10 (2017)

    Google Scholar 

  7. H. Ahmoum, M. Boughrara, M.S. Suait, S. Chopra, M. Kerouad, Impact of position and concentration of sodium on the photovoltaic properties of zinc oxide solar cells. Phys. B Condens. Matter 560, 28–36 (2019)

    Article  CAS  Google Scholar 

  8. R. Mochinaga, T. Yamasaki, T. Arakawa, The gas sensing of SmCoOX/ MOX (M=Fe, Zn, In, Sn) having a heterojunction. Actuat B: Chem. 52, 96–99 (1998)

    Article  CAS  Google Scholar 

  9. R. Zhang, X. Liu, Z. Xiong, Q. Huang, X. Yang, H. Yan, J. Ma, Q. Feng, Z. Shen, Novel micro/nanostructured TiO 2/ZnO coating with antibacterial capacity and cytocompatibility. Ceram. Int. 44, 9711–9719 (2018)

    Article  CAS  Google Scholar 

  10. B.G. Shohany, A.K. Zak, Doped ZnO nanostructures with selected elements—structural, morphology and optical properties: a review. Ceram. Int. 46(5), 5507–5520 (2019)

    Article  Google Scholar 

  11. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98(4), 1–103 (2005)

    Article  Google Scholar 

  12. A.B. Djurisic, A.M.C. Ng, X.Y. Chen, ZnO nanostructures for optoelectronics: material properties and device applications. Prog Quantum Electron 34(2010), 191–259 (2010)

    Article  CAS  Google Scholar 

  13. A. Bahrami, R. Delshadi, S.M. Jafari, Active delivery of antimicrobial nanoparticles into microbial cells through surface functionalization strategies. Trends Food Sci. Technol. 99, 217–228 (2020)

    Article  CAS  Google Scholar 

  14. R.A. Sheldon, Metrics of green chemistry and sustainability: past, present, and future. ACS Sustain. Chem. Eng. 6(2018), 32–48 (2018)

    Article  CAS  Google Scholar 

  15. K. Okitsu, Y. Mizukoshi, T.A. Yamamoto et al., Sonochemical synthesis of gold nanoparticles on chitosan. Mater Lett. 61(2007), 3429–3431 (2007)

    Article  CAS  Google Scholar 

  16. M. Shabaani, S. Rahaiee, M. Zare, S.M. Jafari, Green synthesis of ZnO nanoparticles using loquat seed extract; biological functions and photocatalytic degradation properties. LWT 134, 110133 (2020)

    Article  CAS  Google Scholar 

  17. S. Gunalan, R. Sivaraj, V. Rajendran, Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci. Mater. Int. 22, 693–700 (2012)

    Article  Google Scholar 

  18. M. Sorbiun, E. Shayegan Mehr, A. Ramazani, S. Taghavi Fardood, Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. Int. J. Environ. Res. 12, 29–37 (2018)

    Article  CAS  Google Scholar 

  19. O.J. Nava, C.A. Soto-Robles, C.M. Gomez-Gutierrez, A.R. Vilchis-Nestor, A. Castro-Beltran, A. Olivas, P.A. Luque, Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J. Mol. Struct. 1147, 1–6 (2017)

    Article  CAS  Google Scholar 

  20. R. Shashanka, H. Esgin, V.M. Yilmaz, Y. Caglar, Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cells. J. Sci.: Adv. Mater. Devices 5, 185–191 (2020)

    Google Scholar 

  21. M. Ahameda, M. Javed, A.M.A.M. Khana, H.A. Alhadlaq, Facile green synthesis of ZnO-RGO nanocomposites with enhanced anticancer efficacy. Methods 199, 28–36 (2022)

    Article  Google Scholar 

  22. T.S. Aldeen, H. Elsayed, A. Mohamed, M. Maaz, ZnO nanoparticles prepared via a green synthesis approach: physical properties, photocatalytic and antibacterial activity. J. Phys. Chem. Solids 160, 110313 (2022)

    Article  CAS  Google Scholar 

  23. N. Rania, K. Rawat, A. Shrivastava, E.S. Yadava, K. Gupta, K. Saini, In Vitro study of green synthesized ZnO nanoparticles on human lung cancer cell lines. Mater. Today: Proc. 49(5), 1436–1442 (2022)

    Google Scholar 

  24. H. Agarwal, S.V. Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles–an eco-friendly approach. Res. Eff. Technol. 3(4), 406–413 (2017)

    Google Scholar 

  25. A. Rastogi, P. Singh, F.A. Haraz, A. Barhoum, Biological synthesis of nanoparticles: an environmentally benign approach. Fundam. Nanopart. 2018, 571–604 (2018)

    Article  Google Scholar 

  26. A. Malik, S. Sharif, F. Shaheen, M. Khalid, Y. Iqbal, A. Faisal, M.H. Aziz, M. Atif, S. Ahmad, M.F. Alam, N. Hossain, H. Ahmad, T. Botmart, Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity. J. Saudi Chem. Soc. 26(2), 101438 (2022)

    Article  CAS  Google Scholar 

  27. A. Taşdemir, N. Akman, A. Akkaya, R. Aydın, B. Şahin, Green and cost-effective synthesis of zinc oxide thin films by L-ascorbic acid (AA) and their potential for electronics and antibacterial applications. Ceram. Int. 48(7), 10164–10173 (2022)

    Article  Google Scholar 

  28. S. Slathia, T. Gupta, R.P. Chauhan, Green synthesis of Ag–ZnO nanocomposite using Azadirachta indica leaf extract exhibiting excellent optical and electrical properties. Phys. B Condens. Matter 621, 413287 (2021)

    Article  CAS  Google Scholar 

  29. M.J. Rosado, A.G. Zavaglia, A. Guerrero, A. Romero, Green synthesis of ZnO nanoparticles using polyphenol extracts from pepper waste (Capsicum annuum). J. Clean. Prod. Available 350, 131541 (2022)

    Article  Google Scholar 

  30. R. Yuvakkumar, J. Suresh, B. Saravanakumar et al., Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochim Acta Mol Biomol Spectrosc. 137, 250–258 (2015)

    Article  CAS  Google Scholar 

  31. T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, A. Varma, Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process. 32, 55–61 (2015)

    Article  CAS  Google Scholar 

  32. S. Zandi, P. Kameli, H. Salamati, H. Ahmad, M. Hakimi, Microstructure and optical properties of ZnO nanoparticles prepared by a simple method. Physica B 406, 3215–3218 (2011)

    Article  CAS  Google Scholar 

  33. A. Khorsand Zak, R. Razali, W. H. Abd Majid, M. Darroudi, Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int. J. Nanomedicine. 6(1), 1399–1403 (2011). https://doi.org/10.2147/ijn.s19693

    Article  CAS  Google Scholar 

  34. W. Muhammad, N. Ullah, M. Haroon, B. H. Abbasi, Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using: Papaver somniferum L. RSC Adv. 9(51), 29541–29548 (2019). https://doi.org/10.1039/c9ra04424h

    Article  CAS  Google Scholar 

  35. H. Agarwal, S. Venkat Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles—an eco-friendly approach. Resour. Eff. Technol. 3, 406–413 (2017)

    Google Scholar 

  36. S.M. Sze, M.K. Lee, Semiconductor devices: physics and technology, 3rd edn. (Wiley, Hoboken, NJ, 2013)

    Google Scholar 

  37. H.C. Card, E.H. Rhoderick, Studies of tunnel MOS diodes I. interface effects in silicon Schottky diodes. J. Phys. D Appl. Phys. 4(10), 1589–1601 (1971)

    Article  CAS  Google Scholar 

  38. G. Demir Ersöz, Investigation on UV photoresponsivity of main electrical properties of Au/CuO-PVA/n-Si MPS type Schottky barrier diodes (SBDs). Phys. B: Phys. Conden. Matter 604, 412723 (2021)

    Article  Google Scholar 

  39. M. Kırkbınar, A. Demir, Ş. Altındal, F. Çalışkan, The effect of different rates of ultra-thin gossamer-like rGO coatings on photocatalytic performance in ZnO core-shell structures for optoelectronic applications. Diamond and Related Materials. 130, 109435 (2022). https://doi.org/10.1016/j.diamond.2022.109435

    Article  Google Scholar 

  40. W. Chebil, A. Gokarna, A. Fouzri, N. Hamdaoui, K. Nomenyo, G. Lerondel, Study of the growth time effect on the structural, morphological and electrical characteristics of ZnO/p-Si heterojunction diodes grown by sol-gel assisted chemical bath deposition method. J. Alloy. Compd. 771, 448–455 (2019)

    Article  CAS  Google Scholar 

  41. Y. Choi, K. Lee, C.H. Park, K.H. Lee, J.W. Nam, M.M. Sung, K.M. Lee, H.C. Sohn, S. Im, High current fast switching n-ZnO/p-Si diode’. J. Phys. D: Appl. Phys. 43, 345101 (2010)

    Article  Google Scholar 

  42. F. Yakuphanoglu, Y. Caglar, M. Caglar, S. Ilican, ZnO/p-Si heterojunction photodiode by sol–gel deposition of nanostructure n-ZnO film on p-Si substrate. Mat. Sci. Semicon. Proc. 13, 137–140 (2010)

    Article  CAS  Google Scholar 

  43. S. Aksoy, Y. Caglar, Effect of ambient temperature on electrical properties of nanostructure n-ZnO/p-Si heterojunction diode”. Superlattices Microstruct. 51, 613–625 (2012)

    Article  CAS  Google Scholar 

  44. L. Chabane, N. Zebbar, M. Trari, Y.H. Seba, M. Kechouane, Electrical study of ZnO film thickness effect on the evolution of interface potential barrier of ZnO/p-Si heterojunction: contribution to transport phenomena study. Mater. Sci. Semicond. Process. 133, 105971 (2021)

    Article  CAS  Google Scholar 

  45. A. Kaymaz, E.E. Baydilli, H. Uslu Tecimer, Ş Altındal, Y. Azizian-Kalandaragh, Evaluation of gamma-irradiation effects on the electrical properties of Al/(ZnO-PVA)/p-Si type Schottky diodes using current-voltage measurements. Radiation Phys. Chem. 183, 109430 (2021)

    Article  CAS  Google Scholar 

  46. Sh.A. Mansour, F. Yakuphanoglu, Electrical-optical properties of nanofiber ZnO film grown by sol gel method and fabrication of ZnO/p-Si heterojunction. Solid State Sci. 4, 121–126 (2012)

    Article  Google Scholar 

  47. S. Mridha, M.D. Durga Basak, Photoresponse of n-ZnO/p-Si heterojunction towards ultraviolet/visible lights: thickness dependent behavior. Mater Sci: Mater Electron 20, 376–379 (2009)

    CAS  Google Scholar 

  48. H. Sun, Q.F. Zhang, W. Jin-Lei, Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure. Nanotechnology 17, 2271–2274 (2006)

    Article  CAS  Google Scholar 

  49. N. Zebbar, Y. Kheireddine, K. Mokeddem, A. Hafdallah, M. Kechouane, M.S. Aida, Structural, optical and electrical properties of n-ZnO/p-Si heterojunction prepared by ultrasonic spray. Mater. Sci. Semicond. Process. 14, 229–234 (2011)

    Article  CAS  Google Scholar 

  50. S. Sharmaa, C. Periasamy, A study on the electrical characteristic of n-ZnO/p-Si heterojunction diode prepared by vacuum coating technique. Superlattices Microstruct. 73, 12–21 (2014)

    Article  Google Scholar 

  51. N. Soylu Koc, S.P. Altintas, M. Gokcen, M. Dogruer, C. Altug, A. Varilci, Current-voltage characteristics of nano whisker ZnO/Si heterojunction under UV exposition. Sens. Actuators A: Phys. 342, 113618 (2022)

    Article  Google Scholar 

  52. S. Demirezen, S. Altındal Yerişkin, A detailed comparative study on electrical and photovoltaic characteristics of Al/p Si photodiodes with coumarin doped PVA interfacial layer: the effect of doping concentration. Polym. Bull. (2019). https://doi.org/10.1007/s00289-019-02704-3

    Article  Google Scholar 

  53. Ş Altındal, Y. Azizian-Kalandaragh, M. Ulusoy, G. Pirgholi-Givi, The illumination effects on the current conduction mechanisms of the Au/(Er2O3:PVC)/n-Si (MPS) Schottky diodes. J. Appl Polym Sci (2022). https://doi.org/10.1002/app.52497

    Article  Google Scholar 

  54. E. Yükseltürk, O. Surucu, M. Terlemezoglu, M. Parlak, Ş Altındal, Illumination and voltage effects on the forward and reverse bias current–voltage (IV) characteristics in In/In2S3/p-Si photodiodes. J Mater Sci.: Mater Electron. 32, 21825–2183632 (2021)

    Google Scholar 

  55. S. Demirezen, H.G. Çetinkaya, M. Kara, F. Yakuphanoglu, Ş Altındal, Synthesis, electrical and photo-sensing characteristics of the Al/(PCBM/NiO: ZnO)/p-Si nanocomposite structures. Sens. Actuators, A 317, 112449 (2021)

    Article  CAS  Google Scholar 

  56. A.B. Ulusan, A. Tataroglu, Ş Altındal, Y. Azizian-Kalandaragh, Photoresponse characteristics of Au/(CoFe2O4-PVP)/n-Si/Au (MPS) diode. J. Mater. Sci.: Mater. Electron. 32, 15732–15739 (2021)

    CAS  Google Scholar 

Download references

Funding

This study was funded by Sakarya University of Applied Sciences Scientific Research Project (Project number: 048–2021).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with the contributions of all authors. All authors have approved the final version of the manuscript. MK: Experimental measurements, investigation, writing, review & editing. Eİ: Experimental measurements, investigation, writing, review & editing. AD: Experimental measurements, investigation, writing, review & editing. ŞA: Investigation, review and editing, supervision. FÇ: Experimental measurements, investigation, review & editing, supervision.

Corresponding author

Correspondence to Mine Kırkbınar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kırkbınar, M., İbrahimoğlu, E., Demir, A. et al. Improvement of electric and photoelectric properties of the Al/n-ZnO/p-Si/Al photodiodes by green synthesis method using chamomille flower extract. J Mater Sci: Mater Electron 34, 242 (2023). https://doi.org/10.1007/s10854-022-09515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09515-9

Navigation