Skip to main content
Log in

The structural and dynamic nanohardness properties of yttrium substituted layered (La, Ca)3Mn2O7 manganites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study devotes the structural and dynamic nanohardness properties of yttrium (Y) substituted within La1.4Ca1.6Mn2O7 manganites. XRD, SEM, EDS and dynamic nanohardness measurements are carried out to determine the structural properties such as grain sizes, impurity phases, crystallite sizes, average strain, and surface morphologies. The obtained results were compared with other rare-earth (RE) substituted double-layered lanthanum manganites published in the literature that have the same A-site radius. The lattice parameters are not affected substantially by the Y addition while the average grain size is significantly different from the other RE-substituted samples. The mechanical properties obtained from the dynamic micro-hardness tests such as the contact depth, area of the indent imprint, stiffness, creep, apparent hardness, reduced elastic modulus and the elastic recovery ratio (ERR) are calculated for the Y-substituted sample and compared with previously published studies. Different models are applied to determine the measured and true micro-hardness values. The microstructural and mechanical properties of Y-substituted double-layered manganites are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Z. Raddaoui, S. El Kossi, B. Smiri, T. Al-Shahrani, J. Dhahri, H. Belmabrouk, Raman scattering and red emission of Mn4+ in La0.7Sr0.25Na0.05Mn0.7Ti0.3O3 manganite phosphor for LED applications. RSC Adv. 10(40), 23615–23623 (2020). https://doi.org/10.1039/D0RA04033A

    Article  CAS  Google Scholar 

  2. R. Brahem, Z. Raddaoui, M. Bourguiba, Effect of A-site rare earth substitution on structural, colossal permittivity, and impedance properties of La0.67R0.03Ca0.2Sr0.1MnO3 (R = Pr, Er) manganite. J. Mater. Sci. Mater. Electron. 33(7), 4156–4169 (2022). https://doi.org/10.1007/s10854-021-07611-w

    Article  CAS  Google Scholar 

  3. B.F. Yu, Q. Gao, B. Zhang, X.Z. Meng, Z. Chen, Review on research of room temperature magnetic refrigeration. Int. J. Refrig. 26(6), 622–636 (2003). https://doi.org/10.1016/S0140-7007(03)00048-3

    Article  Google Scholar 

  4. M.A.-A. Mamun, A. Haque, A. Pelton, B. Paul, K. Ghosh, Structural, electronic, and magnetic analysis and device characterization of ferroelectric–ferromagnetic heterostructure (BZT–BCT/LSMO/LAO) devices for multiferroic applications. IEEE Trans. Magn. 54(12), 2502908 (2018)

    Article  Google Scholar 

  5. M. John Abel, A. Pramothkumar, V. Archana, N. Senthilkumar, K. Jothivenkatachalam, J. Joseph Prince, Facile synthesis of solar light active spinel nickel manganite (NiMn2O4) by co-precipitation route for photocatalytic application. Res. Chem. Intermed. 46(7), 3509–3525 (2020). https://doi.org/10.1007/s11164-020-04159-y

    Article  CAS  Google Scholar 

  6. D. Yilmaz, E. Darwish, H. Leion, Utilization of promising calcium manganite oxygen carriers for potential thermochemical energy storage application. Ind. Eng. Chem. Res. (2021). https://doi.org/10.1021/acs.iecr.0c05182

    Article  Google Scholar 

  7. K. Raju, M.S. Song, J.Y. Lee, Crystal structure and magnetic properties of La2−x(Sr0.5Ca0.5)1+xMn2O7 (x = 0.6, 0.8 and 1.0) Ruddlesden–Popper manganites. J. Magn. Magn. Mater. 358–359, 119–122 (2014). https://doi.org/10.1016/j.jmmm.2014.01.040

    Article  CAS  Google Scholar 

  8. C. Thiele, K. Dörr, O. Bilani, J. Rödel, L. Schultz, Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3 PMN-PT (001) (A = Sr, Ca). Phys. Rev. B 75(5), 054408 (2007).https://doi.org/10.1103/PhysRevB.75.054408

    Article  CAS  Google Scholar 

  9. Y.S. Reddy, P. Kistaiah, C. Vishnuvardhan Reddy, Elastic properties of double layered manganites R1.2Sr1.8Mn2O7 (R = La, Pr, Nd, Sm). Rare Met. 33(2), 166–170 (2014). https://doi.org/10.1007/s12598-013-0128-8

    Article  CAS  Google Scholar 

  10. Y.S. Reddy, V.P. Kumar, E. Nagabhushanam, P. Kistaiah, C.V. Reddy, Electrical, magnetic and elastic properties of La1.2(Sr1–xCax)1.8Mn2O7 (0.0 ≤ x ≤ 0.4). J. Alloys Compd. 440(1–2), 6–12 (2007). https://doi.org/10.1016/j.jallcom.2006.08.325

    Article  CAS  Google Scholar 

  11. J.J.U. Buch et al., Structural and elastic properties of Ca-substituted LaMnO3 at 300 K. J. Phys. D 41(2), 025406 (2008). https://doi.org/10.1088/0022-3727/41/2/025406

    Article  CAS  Google Scholar 

  12. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992). https://doi.org/10.1557/jmr.1992.1564

    Article  CAS  Google Scholar 

  13. K. Zeng, C.H. Chiu, An analysis of load–penetration curves from instrumented indentation. Acta Mater. 49(17), 3539–3551 (2001). https://doi.org/10.1016/S1359-6454(01)00245-2

    Article  CAS  Google Scholar 

  14. A.C. Fischer-Cripps, Chapter 2. In Nanoindentation (Springer, New York, 2002)

  15. A. Fischer-Cripps, D. Nicholson, Nanoindentation. Mechanical engineering series. Appl. Mech. Rev. 57(2), B12 (2004)

    Article  Google Scholar 

  16. S. Kaya, D. Akcan, O. Ozturk, L. Arda, Enhanced mechanical properties of yttrium doped ZnO nanoparticles as determined by instrumented indentation technique. Ceram. Int. 44(9), 10306–10314 (2018). https://doi.org/10.1016/j.ceramint.2018.03.038

    Article  CAS  Google Scholar 

  17. M.R. Vanlandingham, N.K. Chang, P.L. Drzal, C.C. White, S.H. Chang, Viscoelastic characterization of polymers using instrumented indentation. I. Quasi-static testing. J. Polym. Sci. B 43(14), 1794–1811 (2005). https://doi.org/10.1002/polb.20454

    Article  CAS  Google Scholar 

  18. Y. Moritomo, A. Asamitsu, H. Kuwahara, Y. Tokura, Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature 380, 141–144 (1996). https://doi.org/10.1038/380141a0

    Article  CAS  Google Scholar 

  19. M.A. Green, D.A. Neumann, Synthesis, structure, and electronic properties LaCa2Mn2O7. Chem. Mater. 12(1), 90–97 (2000). https://doi.org/10.1021/cm991094i

    Article  CAS  Google Scholar 

  20. R. Maezono, N. Nagaosa, Spin and orbital ordering in double-layered manganites. Phys. Rev. B 61(3), 1825–1830 (2000). https://doi.org/10.1103/PhysRevB.61.1825

    Article  CAS  Google Scholar 

  21. J. Dho, W.S. Kim, H.S. Choi, E.O. Chi, N.H. Hur, Chemical pressure effects of cation size variation in layered manganites. J. Phys. Soc. Jpn 70(8), 2448–2453 (2001). https://doi.org/10.1143/JPSJ.70.2448

    Article  CAS  Google Scholar 

  22. R. Xing, W.Q. Wang, Y. Lu, J.J. Zhao, Field-induced first-order ferromagnetic transition in (La0.8Eu0.2)4/3Sr5/3Mn2O7 single crystal. Main Group Chem. 18(1), 55–62 (2019). https://doi.org/10.3233/MGC-180265

    Article  CAS  Google Scholar 

  23. N. Mahamdioua et al., Structural and magneto-transport properties of copper doped double layered manganites La1.4Ca1.6Mn2O7. J. Supercond. Nov. Magn. 26(5), 1441–1444 (2013). https://doi.org/10.1007/s10948-012-2024-0

    Article  CAS  Google Scholar 

  24. N. Mahamdioua, A. Amira, S.P. Altintas, A. Varilci, C. Terzioglu, Effect of re doping on structure and magneto-electrical properties of La1.2Re0.2Ca1.6Mn2O7 manganites. Physica B 429, 12–17 (2013). https://doi.org/10.1016/j.physb.2013.07.027

    Article  CAS  Google Scholar 

  25. A. Wang, Y. Liu, Z. Zhang, Y. Long, G. Cao, Magnetic entropy change and colossal magnetoresistance effect in the layered perovskite La1.34Sr1.66Mn2O7. Solid State Commun. 130, 3–4 (2004). https://doi.org/10.1016/j.ssc.2003.12.037

    Article  CAS  Google Scholar 

  26. N. Sudhakar, K.P. Rajeev, A.K. Nigam, Low temperature magnetization and magnetoresistance studies on the layered manganite system La1.2Sr1.8Mn2xRuxO7 (x = 0, 0.1, 0.5, 10). Solid State Commun. 132(9), 635–640 (2004). https://doi.org/10.1016/j.ssc.2004.08.012

    Article  CAS  Google Scholar 

  27. J.W. Freeland et al., Full bulk spin polarization and intrinsic tunnel barriers at the surface of layered manganites. Nat. Mater. (2005). https://doi.org/10.1038/nmat1280

    Article  Google Scholar 

  28. N. Khare, A.K. Gupta, G.L. Bhalla, Preparation and low field magnetoresistance of double layered manganite La1.4Ca1.6Mn2O7. J. Phys. Chem. Solids 66(6), 949–953 (2005). https://doi.org/10.1016/j.jpcs.2004.10.014

    Article  CAS  Google Scholar 

  29. A.K. Gupta, G.L. Bhalla, N. Khare, Magnetic phase diagram of double-layered La2−2xCa1+2xMn2O7 manganite. J. Phys. Chem. Solids 67(11), 2358–2364 (2006). https://doi.org/10.1016/j.jpcs.2006.06.009

    Article  CAS  Google Scholar 

  30. A.K. Gupta, R. Kumar, V. Kumar, G.L. Bhalla, N. Khare, Study of magnetotransport in double-layered La1.4Ca1.6Mn2O7 manganite: presence of nano-ferromagnetic domains in paramagnetic matrix. J. Phys. Chem. Solids 70(1), 117–121 (2009). https://doi.org/10.1016/j.jpcs.2008.09.010

    Article  CAS  Google Scholar 

  31. E. Taşarkuyu et al., Effect of high temperature sintering on the structural and the magnetic properties of La1.4Ca1.6Mn2O7. J. Alloys Compd. 509(9), 3717–3722 (2011). https://doi.org/10.1016/j.jallcom.2010.12.011

    Article  CAS  Google Scholar 

  32. A. Belkahla, K. Cherif, J. Dhahri, E.K. Hlil, Magnetic, magnetocaloric properties, and critical behavior in a layered perovskite La1.4(Sr0.95Ca0.05)1.6Mn2O7. J. Mater. Sci. 51(16), 7636–7651 (2016). https://doi.org/10.1007/s10853-016-0046-x

    Article  CAS  Google Scholar 

  33. Y.S. Reddy, Electrical transport and magnetoresistance of double layered CMR manganites R1.2Sr1.8Mn2O7 (R = La, Pr, Sm). Mater. Sci. Pol. 35(2), 440–446 (2017). https://doi.org/10.1515/msp-2017-0048

    Article  CAS  Google Scholar 

  34. D. Rybicki, M. Sikora, J. Przewoznik, C. Kapusta, J.F. Mitchell, Interplay of local structure, charge, and spin in bilayered manganese perovskites. Phys. Rev. B 97(11), 1–8 (2018). https://doi.org/10.1103/PhysRevB.97.115158

    Article  Google Scholar 

  35. N.S. Koc, S.P. Altintas, N. Mahamdioua, C. Terzioglu, Cation size mismatch effect in (La1−yREy)1.4Ca1.6Mn2O7 perovskite manganites. J. Alloys Compd. 797, 471–476 (2019). https://doi.org/10.1016/j.jallcom.2019.05.079

    Article  CAS  Google Scholar 

  36. Y.S. Reddy, P. Kistaiah, C. Vishnuvardhan Reddy, Elastic properties of double layered manganites R1.2Sr1.8Mn2O7 (R = La, Pr, Nd, Sm). Rare Met. 33(2), 166–170 (2014). https://doi.org/10.1007/s12598-013-0128-8

    Article  CAS  Google Scholar 

  37. R. Terzioglu, The structural and mechanical properties of Gd and Nd substituted double layered LaCaMnO7 ceramics. J. Alloys Compd. 797, 1173–1180 (2019). https://doi.org/10.1016/j.jallcom.2019.05.191

    Article  CAS  Google Scholar 

  38. S.P. Altintas, Structural and microhardness studies of rare-earth doped Ruddlesden–Popper manganites. Sak. Univ. J. Sci. 25(1), 106–118 (2021). https://doi.org/10.16984/saufenbilder.731354

    Article  Google Scholar 

  39. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(5), 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  40. V. Petrícek, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006: general features. Cryst. Mater. 229(5), 345–352 (2014). https://doi.org/10.1515/zkri-2014-1737

    Article  CAS  Google Scholar 

  41. P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchem. Ein Lehrb. 40, 387–409 (1912). https://doi.org/10.1007/978-3-662-33915-2_7

    Article  Google Scholar 

  42. A.J.C. Wilson, J.I. Langford, Scherrer after Sixty Years: a Survey and some New results in the determination of Crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978)

    Article  Google Scholar 

  43. A.K. Bhunia, P.K. Jha, S. Saha, Optical and structural characterization of ZnO nanoparticles for binding analysis with semen sample by isothermal titration calorimetry. Bionanoscience 10(4), 917–927 (2020). https://doi.org/10.1007/s12668-020-00788-0

    Article  Google Scholar 

  44. A.K. Bhunia, T. Kamilya, S. Saha, Temperature dependent and kinetic study of the adsorption of bovine serum albumin to ZnO nanoparticle surfaces. ChemistrySelect 1(11), 2872–2882 (2016).  https://doi.org/10.1002/slct.201600446

    Article  CAS  Google Scholar 

  45. A.K. Bhunia, S. Saha, Characterization of zinc oxide nanocrystals with different morphology for application in ultraviolet-light photocatalytic performances on Rhodamine B. Luminescence 36(1), 149–162 (2021). https://doi.org/10.1002/bio.3930

    Article  CAS  Google Scholar 

  46. H. Asano, J. Hayakawa, M. Matsui, Two-dimensional ferromagnetic ordering and magnetoresistance in the layered perovskite. Phys. Rev. B 56(9), 5395–5403 (1997). https://doi.org/10.1103/PhysRevB.56.5395

    Article  CAS  Google Scholar 

  47. N. Mahamdioua, A. Amira, S.P. Altintas, A. Varilci, C. Terzioglu, Effect of Re doping on structure and magneto-electrical properties of La1.2Re0.2Ca1.6Mn2O7 manganites. Physica B 429, 12–17 (2013). https://doi.org/10.1016/j.physb.2013.07.027

    Article  CAS  Google Scholar 

  48. A.N. Ulyanov, D.-Q. Hoang, N.N. Kuznetsova, S.-C. Yu, Negative imaginary component of AC magnetic susceptibility, metastable states, and magnetic relaxation in La0.6Sr0.35MnTi0.05O3. Funct. Mater. Lett. 13(04), 2050023 (2020). https://doi.org/10.1142/S179360472050023X

    Article  CAS  Google Scholar 

  49. N. Khare, A.K. Gupta, G.L. Bhalla, Low field magnetoresistance and conduction noise in layered manganite La1.4Ca1.6Mn2O7. Solid State Commun. 132(11), 799–803 (2004). https://doi.org/10.1016/j.ssc.2004.09.002

    Article  CAS  Google Scholar 

  50. S.D. Bhame, J.F. Fagnard, M. Pekala, P. Vanderbemden, B. Vertruyen, La0.7Ca0.3MnO3/Mn3O4 composites: does an insulating secondary phase always enhance the low field magnetoresistance of manganites. J. Appl. Phys. 111(6), 063905 (2012). https://doi.org/10.1063/1.3694664

    Article  CAS  Google Scholar 

  51. D.S. Stone, J.E. Jakes, J. Puthoff, A.A. Elmustafa, Analysis of indentation creep. J. Mater. Res. 25(4), 611–621 (2010). https://doi.org/10.1557/JMR.2010.0092

    Article  CAS  Google Scholar 

  52. F. Pöhl, Pop-in behavior and elastic-to-plastic transition of polycrystalline pure iron during sharp nanoindentation. Sci. Rep. 9(1), 1–12 (2019). https://doi.org/10.1038/s41598-019-51644-5

    Article  CAS  Google Scholar 

  53. N. Mahamdioua, A. Amira, S.P. Altintas, A. Varilci, C. Terzioglu, Structural and magnetotransport properties of the Y doped A-site deficient double layered manganites La1.2−x0.2YxCa1.6Mn2O7. J. Solid State Chem. 240, 1–8 (2016). https://doi.org/10.1016/j.jssc.2016.05.011

    Article  CAS  Google Scholar 

  54. I.G. Berzina, P.A. Savintsev, Effect of irradiation on the contact melting of Metals. In Surface Phenomena in Metallurgical Processes (Springer New York, 1965), pp. 186–192

  55. R.K. Banerjee, P. Feltham, Deformation and fracture of germanium single crystals. J. Mater. Sci. 9(9), 1478–1482 (1974). https://doi.org/10.1007/BF00552933

    Article  CAS  Google Scholar 

  56. K. Sangwal, Microhardness of as-grown and annealed lead sulphide crystals. J. Mater. Sci. 24(3), 1128–1132 (1989). https://doi.org/10.1007/BF01148809

    Article  CAS  Google Scholar 

  57. P. Feltham, R. Banerjee, Theory and application of microindentation in studies of glide and cracking in single crystals of elemental and compound semiconductors. J. Mater. Sci. 27(6), 1626–1632 (1992). https://doi.org/10.1007/BF00542926

    Article  CAS  Google Scholar 

  58. K. Sangwal, On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys. 63(2), 145–152 (2000). https://doi.org/10.1016/S0254-0584(99)00216-3

    Article  CAS  Google Scholar 

  59. E. Asikuzun, O. Ozturk, L. Arda, D. Akcan, S.D. Senol, C. Terzioglu, Preparation, structural and micromechanical properties of (Al/Mg) co-doped ZnO nanoparticles by sol–gel process. J. Mater. Sci. Mater. Electron. 26(10), 8147–8159 (2015). https://doi.org/10.1007/s10854-015-3475-4

    Article  CAS  Google Scholar 

  60. M. Moner-Girona, A. Roig, E. Molins, E. Martínez, J. Esteve, Micromechanical properties of silica aerogels. Appl. Phys. Lett. 75(5), 653–655 (1999). https://doi.org/10.1063/1.124471

    Article  CAS  Google Scholar 

  61. J. Makni-Chakroun, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Impact of a small amount of vacancy in both lanthanum and calcium on the physical properties of nanocrystalline La0.7Ca0.3MnO3 manganite. J. Alloys Compd. 650, 421–429 (2015). https://doi.org/10.1016/j.jallcom.2015.07.052

    Article  CAS  Google Scholar 

  62. E. Sellami-Jmal, A. Ezaami, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Investigation on physical properties in lanthanum vacancy of La0.65Ca0.35MnO3 elaborated at high temperature. J. Magn. Magn. Mater. 465, 762–767 (2018). https://doi.org/10.1016/j.jmmm.2018.06.013

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by NSK and ÖÖ. The first draft of the manuscript was written by NSK and RT, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to N. Soylu Koc.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koc, N.S., Terzioglu, R., Ozturk, O. et al. The structural and dynamic nanohardness properties of yttrium substituted layered (La, Ca)3Mn2O7 manganites. J Mater Sci: Mater Electron 34, 241 (2023). https://doi.org/10.1007/s10854-022-09511-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09511-z

Navigation