Skip to main content

Advertisement

Log in

Relaxation behavior and energy storage of A-site substituted Sr4−xNa2−xLaxTa0.6Nb9.4O30 ferroelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The tungsten bronze ceramics were prepared by solid-state reaction method to investigate the effect of La3+ concentration on the microstructure, dielectric and ferroelectric properties of Sr4 − xNa2 − xLaxTa0.6Nb9.4O30 (SNLTN: 0 ≤ x ≤ 0.4). X-ray diffraction results show that the tungsten bronze phase structure was a tetragonal phase in the P4bm space group at room temperature. The A-site structural vacancies increases as the structure transformed from “filled” to “unfilled” state. At the same time, the distortion of the BO6 octahedral increases. The results of the temperature dependence of the dielectric constant indicate that adding La3+ promotes the emergence of dipole-glass-like behavior and enhances dielectric relaxation. To better understand how polar clusters in Sr4 − xNa2 − xLaxTa0.6Nb9.4O30 ceramics change with increasing x, the size and kinetic behavior of PNRs were calculated and analyzed using the Vogel-Fulcher relationship and macroscopic and phenomenological statistical model, which reveals that the thermal stability of the dielectric constant is inversely related to the size of PNRs in addition to the long-range ordering of the system is disrupted. Hence, it is critical for the energy storage performance to obtain small size and the high number of active PNRs and the weak coupling between PNRs and other polar clusters. Finally, an energy storage density of 2.06 J/cm3 was received in Sr3.8Na1.8La0.2Ta0.6Nb9.4O30.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in this paper and on a request from the corresponding author.

References

  1. M. Said, T.S. Velayutham, W.C. Gan, W.H. Abd Majid, Ceram. Int. 41, 7119–7124 (2015). https://doi.org/10.1016/j.ceramint.2015.02.023

    Article  CAS  Google Scholar 

  2. W. Chen, W.Z. Yang, X.Q. Liu, X.M. Chen, J. Alloys Compd. 675, 311–316 (2016). https://doi.org/10.1016/j.jallcom.2016.03.099

    Article  CAS  Google Scholar 

  3. P. Yang, L. Li, S. Hao, X. Chao, L. Wei, Z. Yang, J. Eur. Ceram. Soc. 37, 2605–2613 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.02.035

    Article  CAS  Google Scholar 

  4. M.P. Trubelja, E. Ryba, D.K. Smith, J. Mater. Sci. 31, 1435–1443 (1996). https://doi.org/10.1007/BF00357850

    Article  CAS  Google Scholar 

  5. V. Veerapandiyan, F. Benes, T. Gindel, M. Deluca, Materials 13, 5742 (2020). https://doi.org/10.3390/ma13245742

    Article  CAS  Google Scholar 

  6. Z. Yang, R. Gu, L. Wei, H. Ren, J. Alloys Compd. 504, 211–216 (2010). https://doi.org/10.1016/j.jallcom.2010.05.093

    Article  CAS  Google Scholar 

  7. Y. Wang, T.L. Sun, X.L. Zhu, L. Liu, X.M. Chen, J. Appl. Phys. 129, 244107 (2021). https://doi.org/10.1063/5.0050391

    Article  CAS  Google Scholar 

  8. M. Zhang, X. Zuo, J. Alloys Compd. 806, 386–392 (2019). https://doi.org/10.1016/j.jallcom.2019.07.269

    Article  CAS  Google Scholar 

  9. S. Cao, J. Zhu, Q. Chen et al., J. Materiomics 8, 38–46 (2022). https://doi.org/10.1016/j.jmat.2021.06.001

    Article  Google Scholar 

  10. S. Koohi-Fayegh, M.A. Rosen, J. Energy Storage 27, 101047 (2020). doi:https://doi.org/10.1016/j.est.2019.101047

    Article  Google Scholar 

  11. L. Cao, Y. Yuan, X. Zhang, E. Li, S. Zhang, ACS Sustain. Chem. Eng. 8, 17527–17539 (2020). https://doi.org/10.1021/acssuschemeng.0c06861

    Article  CAS  Google Scholar 

  12. H.L. Wang, X.Y. Bu, X.Z. Zhang et al., ACS Appl. Energy Mater. 4, 9066–9076 (2021). https://doi.org/10.1021/acsaem.1c01369

    Article  CAS  Google Scholar 

  13. X. Zhang, W. Ye, X. Bu et al., Dalton Trans. 50, 124–130 (2021). https://doi.org/10.1039/d0dt03511d

    Article  CAS  Google Scholar 

  14. S. Xu, R. Hao, Z. Yan et al., J. Eur. Ceram. Soc. 42, 2781–2788 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.02.005

    Article  CAS  Google Scholar 

  15. X. Zhang, H. Wang, X. Bu et al., Inorg. Chem. 60, 6559–6568 (2021). https://doi.org/10.1021/acs.inorgchem.1c00362

    Article  CAS  Google Scholar 

  16. E. García-González, A. Torres-Pardo, R. Jiménez, J.M. González-Calbet, Chem. Mater. 19, 3575–3580 (2007). https://doi.org/10.1021/cm071303w

    Article  CAS  Google Scholar 

  17. X. Zhu, M. Fu, M.C. Stennett et al., Chem. Mater. 27, 3250–3261 (2015). https://doi.org/10.1021/acs.chemmater.5b00072

    Article  CAS  Google Scholar 

  18. A. Torres-Pardo, R. Jiménez, J.M. González-Calbet, E. García-González, Inorg. Chem. 50, 12091–12098 (2011). https://doi.org/10.1021/ic2016098

    Article  CAS  Google Scholar 

  19. W.H. Huang, D. Viehland, R.R. Neurgaonkar, J. Appl. Phys. 76, 490–496 (1994). https://doi.org/10.1063/1.357100

    Article  CAS  Google Scholar 

  20. J. Gardner, F. Yu, C. Tang, W. Kockelmann, W. Zhou, F.D. Morrison, Chem. Mater. 28, 4616–4627 (2016). https://doi.org/10.1021/acs.chemmater.6b01306

    Article  CAS  Google Scholar 

  21. P. Yang, B. Yang, S. Hao, L. Wei, Z. Yang, J. Alloys Compd. 685, 175–185 (2016). https://doi.org/10.1016/j.jallcom.2016.05.035

    Article  CAS  Google Scholar 

  22. Z. Wu, S. Li, Y.M. Yousry et al., Nat. Commun. 13, 3104 (2022). https://doi.org/10.1038/s41467-022-30822-6

    Article  CAS  Google Scholar 

  23. P.A. Fleury, Annu. Rev. Mater. Sci. 6, 157–180 (1976). https://doi.org/10.1146/annurev.ms.06.080176.001105

    Article  CAS  Google Scholar 

  24. J. Liu, F. Li, Y. Zeng et al., Phys. Rev. B 96, 054115 (2017). doi:https://doi.org/10.1103/PhysRevB.96.054115

    Article  Google Scholar 

  25. L. Liu, S. Ren, J. Zhang, B. Peng, L. Fang, D. Wang, J. Am. Ceram. Soc. 101, 2408–2416 (2018). https://doi.org/10.1111/jace.15410

    Article  CAS  Google Scholar 

  26. M.J. Haun, E. Furman, S.J. Jang, L.E. Cross, Ferroelectrics 99, 63–86 (1989). doi:https://doi.org/10.1080/00150198908221440

    Article  CAS  Google Scholar 

  27. L. Chen, S. Deng, H. Liu, J. Wu, H. Qi, J. Chen, Nat. Commun. 13, 3089 (2022). https://doi.org/10.1038/s41467-022-30821-7

    Article  CAS  Google Scholar 

  28. D.J. Zhang, X. Yao, Acta Phys. Chim. Sin. 20, 712–716 (2004). https://doi.org/10.3866/pku.whxb20040709

    Article  Google Scholar 

  29. K. Chen, F. Wei, L. Jia et al., J. Am. Ceram. Soc. 103, 2859–2867 (2019). https://doi.org/10.1111/jace.16956

    Article  CAS  Google Scholar 

  30. T. Shao, H. Du, H. Ma et al., J. Mater. Chem. A 5, 554–563 (2017). doi:https://doi.org/10.1039/C6TA07803F

    Article  CAS  Google Scholar 

  31. J. Ye, G. Wang, M. Zhou et al., J. Mater. Chem. C 7, 5639–5645 (2019). doi:https://doi.org/10.1039/C9TC01414D

    Article  CAS  Google Scholar 

  32. P. Zhao, Z. Cai, L. Wu, C. Zhu, L. Li, X. Wang, J. Adv. Ceram. 10, 1153–1193 (2021). https://doi.org/10.1007/s40145-021-0516-8

    Article  CAS  Google Scholar 

  33. K. Uchino, S. Nomura, Ferroelectrics 44, 55–61 (1982). doi:https://doi.org/10.1080/00150198208260644

    Article  CAS  Google Scholar 

  34. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916–2921 (1990). https://doi.org/10.1063/1.346425

    Article  CAS  Google Scholar 

  35. W.B. Feng, X.L. Zhu, X.Q. Liu et al., J. Am. Ceram. Soc. 101, 1623–1631 (2018). https://doi.org/10.1111/jace.15332

    Article  CAS  Google Scholar 

  36. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 1719–1724 (2009). https://doi.org/10.1111/j.1551-2916.2009.03104.x

    Article  CAS  Google Scholar 

  37. M. Zhou, R. Liang, Z. Zhou, X. Dong, J. Mater. Chem. C 6, 8528–8537 (2018). doi:https://doi.org/10.1039/c8tc03003k

    Article  CAS  Google Scholar 

  38. N. Zhang, W. Gao, H. Zhang et al., Vib. Spectrosc. 58, 74–78 (2012). https://doi.org/10.1016/j.vibspec.2011.10.001

    Article  CAS  Google Scholar 

  39. Y.B. Yao, C.L. Mak, B. Ploss, J. Eur. Ceram. Soc. 32, 4353–4361 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.07.034

    Article  CAS  Google Scholar 

  40. L. Luisman, A. Feteira, K. Reichmann, Appl. Phys. Lett. 99, 192901 (2011). https://doi.org/10.1063/1.3660255

    Article  CAS  Google Scholar 

  41. V. Bobnar, J. Holc, M. Hrovat, M. Kosec, J. Appl. Phys. 101, 074103 (2007). https://doi.org/10.1063/1.2717090

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the National Natural Science Foundation of China (12164012), Science and Technology Major Project of Guangxi (AA21077012), Natural Science Foundation of Guangxi (Nos. AA21238001, 2022ZYZX1173, GA245006, BA245069, BA297029, AD18281042), and open funding of the Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices (19AA-15, 20KF-16) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by XZ, ZJ and YD. The first draft of the manuscript was written by XZ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Changzheng Hu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. In this manuscript, we did not collect any samples of human and animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1005.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Jin, Z., Dan, Y. et al. Relaxation behavior and energy storage of A-site substituted Sr4−xNa2−xLaxTa0.6Nb9.4O30 ferroelectric ceramics. J Mater Sci: Mater Electron 34, 148 (2023). https://doi.org/10.1007/s10854-022-09492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09492-z

Navigation