Skip to main content
Log in

Investigation on the microstructure and magnetic properties of Mg(Ga2−xFex)O4 spinel ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ions substitution into spinel ferrites has attracted intensive attention on probing novel physical phenomenon as well as developing the potential fields in information technology. Herein, we focus on a series of magnetic behaviors and thermal stability of Mg(Ga2−xFex)O4 substitution system. The magnetic properties and microstructure of MgGa2O4 spinel ferrites doped with Fe ions at the Ga site have been prepared and systematically investigated in this work. Accordingly, some specific experimental results and conclusions are obtained based on the characterization of structure and magnetic properties. The continuously increasing lattice constants for doping samples and considerable Rietveld fitting results manifest the high quality of the prepared sample. Furthermore, the magnetization and magnetic transition temperature are gradually improved with the increase of Fe-doping concentration. Specifically, the saturation magnetization Ms increased from 5.24 to 35.09 emu/g upon substituting. Based on the Fe substitution, a well preservation of soft magnetic behavior sustains with strengthened Ms, and also inducing some competing magnetic frustration, namely, spin glass (SG). Our discovery paves the pathway for fundamental research in enhancing magnetization and magnetic coupling of spinel ferrites, as well as developing the potential application in low-temperature chip inductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Hcini, M. Boudard, S. Zemni, M. Oumezzine, Effect of Fe-doping on structural, magnetic and magnetocaloric properties of Nd0.67Ba0.33Mn1–xFexO3 manganites. Ceram. Int. 40, 16041–16050 (2014)

    Article  CAS  Google Scholar 

  2. F.L. Zan, Y.Q. Ma, Q. Ma, G.H. Zheng, Z.X. Dai, M.Z. Wu, G. Li, Z.Q. Sun, X.S. Chen, One-step hydrothermal synthesis and characterization of high magnetization CoFe2O4/Co0.7Fe0.3 nanocomposite permanent magnets. J. Alloys Compd. 553, 79–85 (2013)

    Article  CAS  Google Scholar 

  3. L.Z. Li, R. Wang, X.Q. Tu, L. Peng, Structure and static magnetic properties of Ti-substituted NiZnCo ferrite thin films synthesized by the sol-gel process. J. Magn. Magn. Mater. 355, 306–308 (2014)

    Article  CAS  Google Scholar 

  4. Y. Gao, Z. Wang, J.J. Pei, H.M. Zhang, Structural, elastic, thermal and soft magnetic properties of Ni-Zn-Li ferrites. J. Alloys Compd. 774, 1233–1242 (2019)

    Article  CAS  Google Scholar 

  5. Y. Slimani, E. Hannachi, M.K.B. Salem, F.B. Azzouz, M.B. Salem, Comparative study of electrical transport and magnetic measurements of Y3Ba5Cu8O18±δ and YBa2Cu3O7–δ compounds: intragranular and intergranular superconducting properties. Appl. Phys. A 124, 91 (2018)

    Article  Google Scholar 

  6. E. Oumezzine, S. Hcini, M. Baazaoui, E.K. Hlil, Critical behavior of Zn0.6–xNixCu0.4Fe2O4 ferrite nanoparticles. J. Alloys Compd. 656, 676–684 (2016)

    Article  CAS  Google Scholar 

  7. O. Suwalka, R.K. Sharma, V. Sebastian, N. Lakshmi, K. Venugopalan, A study of nanosized ni substituted co-zn ferrite prepared by coprecipitation. J. Magn. Magn. Mater. 313, 198–203 (2007)

    Article  CAS  Google Scholar 

  8. J.Y. Hu, C.C. Liu, M. Wang, M.L. Wang, X.C. Kan, G.H. Zheng, Y.Q. Ma, Analysis on the microstructure and magnetic properties of MgGaFeO4 spinel compound. J. Am. Ceram. Soc. 104, 6434–6443 (2021)

    Article  CAS  Google Scholar 

  9. H.H. Kora, M. Taha, A. Abdelwahab, A.A. Farghali, S.I. El-Dek, Effect of pressure on the geometric, electronic structure, elastic, and optical properties of the normal spinel MgFe2O4: a first-principles study. Mater. Res. Express 7, 106101 (2020)

    Article  CAS  Google Scholar 

  10. L.Z. Li, X.X. Zhong, R. Wang, X.Q. Tu, L. Peng, Structural and magnetic properties of co-substituted NiCu ferrite nanopowders. J. Magn. Magn. Mater. 433, 98–103 (2017)

    Article  CAS  Google Scholar 

  11. Y. Gao, Z. Wang, J.J. Pei, H.M. Zhang, Structure and magnetic properties correlated with cation distribution of Ni0.5–xMoxZn0.5Fe2O4 ferrites prepared by sol-gel auto-combustion method. Ceram. Int. 44, 20148–20153 (2018)

    Article  CAS  Google Scholar 

  12. H.Y. Playford, A.C. Hannon, M.G. Tucker, M.R. Lees, R.I. Walton, Total neutron scattering investigation of the structure of a cobalt gallium oxide spinel prepared by solvothermal oxidation of gallium metal. J. Phys.: Condens. Matter. 25, 454212 (2013)

    Google Scholar 

  13. Z.H. He, J.F. Gao, L.B. Kong, Polycationic bimetallic oxide CoGa2O4 with spinel structure: dominated pseudocapacitance, dual-energy storage mechanism, and Li-ion hybrid supercapacitor application. Ionics 26, 1379–1388 (2020)

    Article  CAS  Google Scholar 

  14. J.Y. Hu, C.C. Liu, M.L. Wang, M. Wang, S.G. Wang, G.H. Zheng, Y.Q. Ma, Investigations on the magnetocaloric effect and critical behavior of CoGa1.2Fe0.8O4 spinel ferrite. J. Solid State Chem. 314, 123369 (2022)

    Article  CAS  Google Scholar 

  15. Q. Tian, J.G. Li, Q. Wang, S. Wang, X.D. Zhang, Structure and magnetic properties of Ni0.11ZnxCo0.03Fe2.86–xO4 ferrite films deposited on Ag-coated glass substrates by wet chemical method. Thin Solid Films 518, 313–318 (2009)

    Article  CAS  Google Scholar 

  16. S. Lin, D.F. Shao, J.C. Lin, L. Zu, X.C. Kan, B.S. Wang, Y.N. Huang, W.H. Song, W.J. Lu, P. Tong, Y.P. Sun, Spin-glass behavior and zero-field-cooled exchange bias in a Cr-based antiperovskite compound PdNCr3. J. Mater. Chem. C 3, 5683 (2015)

    Article  CAS  Google Scholar 

  17. C.C. Liu, X.Y.N. Tao, X.C. Kan, X.S. Liu, C.H. Zhang, S.J. Feng, Y.J. Yang, Q.R. Lv, J.Y. Hu, M. Shezad, Spin-glass behavior in co-based antiperovskite compound SnNCo3. Appl. Phys. Lett. 116, 052401 (2020)

    Article  CAS  Google Scholar 

  18. S.C. Maatar, R.M. nassri, W.C. Koubaa, M. Koubaa, A. Cheikhrouhou, Structural, magnetic and magnetocaloric properties of La0.8Ca0.2–xNaxMnO3 manganites (0 ≤ x ≤ 0.2). J. Solid State Chem. 225, 83–88 (2015)

    Article  Google Scholar 

  19. L.Z. Li, Z. Yu, Z.W. Lan, K. Sun, R.D. Guo, Effects of annealing temperature on the structure and static magnetic properties of NiZnCo ferrite thin films. J. Magn. Magn. Mater. 368, 8–11 (2014)

    Article  CAS  Google Scholar 

  20. W. Zhong, W. Chen, W.P. Ding, N. Zhang, Y.W. Du, Q.J. Yan, Magnetocaloric properties of Na-substituted perovskite-type manganese oxides. J. Solid State Commun. 106, 55–58 (1998)

    Article  CAS  Google Scholar 

  21. I. Mindru, D. Gingasu, G. Marinescu, L. Patron, L. Diamandescu, M. Feder, J.M. Calderon-Moreno, N. Stanica, Tartarate precursors to CoxZn1–xGa2O4 spinel oxides. Mater. Chem. Phys. 134, 478–483 (2012)

    Article  CAS  Google Scholar 

  22. M.M. Can, T. Karaman, S. Shawuti, Optical and structural modification of boron-doped CoGa2O4 particles. Ceram. Int. 46, 13025–13032 (2020)

    Article  CAS  Google Scholar 

  23. L.Z. Li, L. Peng, Y.X. Li, X.H. Zhu, Structure and magnetic properties of co-sub-stituted NiZn ferrite thin films synthesized by the sol-gel process. J. Magn. Magn. Mater. 324, 60–62 (2012)

    Article  CAS  Google Scholar 

  24. G.M. Kuz’micheva, V.B. Rybakov, S.A. Kutovoi, Preparation and structure of Ga2–xScxO3 (0.42 ≤ x ≤ 0.52). Inorg. Mater. 40, 1066–1069 (2004)

    Article  Google Scholar 

  25. F. Ansari, A. Sobhani, M.S. Niasari, Sol-gel auto-combustion synthesis of PbFe12O19 using maltose as a novel reductant. RSC Adv. 4, 63946–63950 (2014)

    Article  CAS  Google Scholar 

  26. F. Ansari, A. Sobhani, M.S. Niasari, PbTiO3/PbFe12O19 nanocomposites: green synthesis through an eco-friendly approach. Composites B 85, 170–175 (2016)

    Article  CAS  Google Scholar 

  27. F. Ansari, A. Sobhani, M.S. Niasari, Facile synthesis, characterization and magnetic property of CuFe12O19 nanostructures via a sol-gel auto-combustion process. J. Magn. Magn. Mater. 401, 362–369 (2016)

    Article  CAS  Google Scholar 

  28. F. Ansari, A. Sobhani, M.S. Niasari, Green synthesis of magnetic chitosan nanocomposites by a new sol-gel auto-combustion method. J. Magn. Magn. Mater. 410, 27–33 (2016)

    Article  CAS  Google Scholar 

  29. A.H. Nassajpour-Esfahani, R. Emadi, A. Alhaji, A. Bahrami, M.R. Haftbaradaran-Esfahani, Towards high strength MgAl2O4/Si3N4 transparent nanocomposite, using spark plasma sintering. J. Alloys Compd. 830, 154588 (2020)

    Article  CAS  Google Scholar 

  30. N. Ranvah, Y. Melikhov, D.C. Jiles, J.E. Snyder, A.J. Moses, P.I. Williams, S.H. Song, Temperature dependence of magnetic anisotropy of Ga-substituted cobalt ferrite. J. Appl. Phys. 103, 07E506 (2008)

    Article  Google Scholar 

  31. A. Sharma, H.S. Mund, K. Bapna, S. Tiwari, M. Itou, Y. Sakurai, B.L. Ahuja, Investigation of spin moment in Ga-substituted cobalt ferrite: magnetic compton scattering and photoemission studies. J. Mater. Sci. 52, 4568–4574 (2017)

    Article  CAS  Google Scholar 

  32. P. Prajapat, S. Dhaka, H.S. Mund, Investigation of the influence of annealing temperature on the structural and magnetic properties of MgFe2O4. J. Electron. Mater. 50, 4671–4677 (2021)

    Article  CAS  Google Scholar 

  33. J.Y. Hu, Y.Q. Ma, X.C. Kan, C.C. Liu, Observation of spin glass behavior in spinel compound CoGa2O4. J. Mater. Sci.: Mater. Electron. 32, 14592–14600 (2021)

    CAS  Google Scholar 

  34. A. Malinowski, V.L. Bezusyy, R. Minikayev, P. Dziawa, Y. Syryanyy, M. Sawicki, Spin-glass behavior in Ni-doped La1.85Sr0.15CuO4. Phys. Rev. B 84, 024409 (2011)

    Article  Google Scholar 

  35. X.C. Kan, B.S. Wang, L. Zhang, L. Zu, S. Lin, J.C. Lin, P. Tong, W.H. Song, Y.P. Sun, Critical behavior in tetragonal antiperovskite GeNFe3 with a frustrated ferromagnetic state. Phys. Chem. Chem. Phys. 19, 13703–13709 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Province (2208085QA14, 2108085MG235), Scientific Research Platform Project of Suzhou University (2021XJPT15), Project of Excellent Talents Plan for High Education of Anhui Province (gxyq2020059), the Scientific Research Foundation for Doctoral of Suzhou University (2020BS009), and Scientific Research Project of Suzhou University (2022xhx251, 2022xhx008).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CL and BZ. The first draft of the manuscript was written by XN and CL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chaocheng Liu or Bangfeng Zong.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, X., Liu, C. & Zong, B. Investigation on the microstructure and magnetic properties of Mg(Ga2−xFex)O4 spinel ferrites. J Mater Sci: Mater Electron 34, 118 (2023). https://doi.org/10.1007/s10854-022-09491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09491-0

Navigation