Skip to main content

Advertisement

Log in

Enhanced energy storage properties in Sr1.85Ca0.15NaNb5O15-based tungsten bronze ceramics through multicomponent substitution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free Sr1.85−2xCa0.15+xSmxNaNb5−xHfxO15 (x = 0–0.05) ceramics with tetragonal tungsten bronze structure were synthesized and characterized. Compared with the Sr1.85Ca0.15NaNb5O15 ceramic, the substitutions of even very small amount of Hf4+ in B site and Sm3+ in A site lead to a notable change of the microstructure and relevant dielectric and ferroelectric properties. The most uniform and compact microstructure with fine grains and few defects is obtained for the x = 0.04 compound. For the electrical properties, x = 0.04 compound exhibits the largest dielectric permittivity, low dielectric loss, smallest ferroelectric polarization, largest high-temperature electric resistance, and largest dielectric breakdown strength. The analysis of Raman vibration modes reveals the corresponding local structure change for different compositions. The relation between the cation substitutions and the electrical properties evolution is discussed in detail and the potential of x = 0.04 ceramic for energy storage capacitor is revealed. High total energy storage density (4.7 J/cm3) and recoverable energy storage density (2.7 J/cm3) along with energy storage efficiency (58%) are observed for the x = 0.04 sample at the applied electric field of 430 kV/cm. In addition, good stability of the energy storage property is also obtained for different frequencies. The capacitive performances obtained in this study demonstrate the great potential of tungsten bronze ceramics designed for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The original data that support the findings of the present study are available from the corresponding author upon reasonable request.

References

  1. P. Sharma, Q. Zhang, D. Sando, C.H. Lei, Y. Liu, J. Li, V. Nagarajan, J. Seidel, Sci. Adv. 3, e1700512 (2017)

  2. C. Qiu, B. Wang, N. Zhang, S. Zhang, J. Liu, D. Walker, Y. Wang, H. Tian, T.R. Shrout, Z. Xu, L.-Q. Chen, F. Li, Nature 577, 350–354 (2020)

    Article  CAS  Google Scholar 

  3. H. Ye, F. Yang, Z. Pan, D. Hua, X. Lv, H. Chen, F.F. Wang, J. Wang, P. Li, J. Chen, J. Liu, J. Zhai, Acta Mater. 203, 116484 (2021)

    Article  CAS  Google Scholar 

  4. L. Thansanga, A. Shukla, N. Kumar, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 32, 21337–21349 (2021)

    CAS  Google Scholar 

  5. J.A. Bock, S. Trolier-McKinstry, G.D. Mahan, C.A. Randall, Phys. Rev. B 90, 115106 (2014)

    Article  Google Scholar 

  6. X. Zhu, M. Fu, M.C. Stennett, P.M. Vilarinho, I. Levin, C.A. Randall, J. Gardner, F.D. Morrison, I.M. Reaney, Chem. Mater. 27, 3250–3261 (2015)

    Article  CAS  Google Scholar 

  7. M. Pasciak, M. Kopecky, J. Kub, J. Fabry, J. Dec, P. Ondrejkovic, J. Hlinka, E. Buixaderas, Phase Trans. 91, 969–975 (2018)

    Article  CAS  Google Scholar 

  8. W.B. Feng, X.L. Zhu, X.M. Chen, J. Mater. Sci. Mater. Electron. 32, 7481–7490 (2021)

    CAS  Google Scholar 

  9. V. Massarotti, D. Capsoni, M. Bini, C.B. Azzoni, M.C. Mozzati, P. Galinetto, J. Phys. Chem. C 111, 6857–6861 (2007)

    Article  CAS  Google Scholar 

  10. E. Buixaderas, M. Kempa, Š Svirskas, C. Kadlec, V. Bovtun, M. Savinov, M. Pasciak, J. Dec, Phys. Rev. B 100, 184113 (2019)

    Article  CAS  Google Scholar 

  11. J. Gardner, F.J. Yu, C. Tang, W.F. Kockelmann, W.Z. Zhou, F.D. Morrison, Chem. Mater. 28, 4616–4627 (2016)

    Article  CAS  Google Scholar 

  12. W.B. Feng, X.L. Zhu, X.Q. Liu, X.M. Chen, J. Mater. Chem. C 5, 4009–4016 (2017)

    Article  CAS  Google Scholar 

  13. M. Albino, P. Heijboer, F. Porcher, R. Decourt, V. Maglione, J. Mater. Chem. C 6, 1521–1534 (2018)

    Article  CAS  Google Scholar 

  14. X.L. Zhu, K.Y. Zhuang, S.Y. Wu, X.M. Chen, J. Am. Ceram. Soc. 102, 3438–3447 (2019)

    Article  CAS  Google Scholar 

  15. B. Yang, S. Hao, P. Yang, L. Wei, Z. Yang, Ceram. Int. 44, 8832–8841 (2018)

    Article  CAS  Google Scholar 

  16. W.B. Feng, X.L. Zhu, X.Q. Liu, X.M. Chen, Appl. Phys. Lett. 112, 262904 (2018)

    Article  Google Scholar 

  17. L. Cao, Y. Yuan, B. Tang, E.Z. Li, S.R. Zhang, Chem. Eng. J. 421, 127846 (2021)

    Article  CAS  Google Scholar 

  18. X.Z. Zhang, H.L. Wang, X.Y. Bu, P. Zheng, L.L. Li, F. Wen, W.F. Bai, J.J. Zhang, L. Zheng, J.W. Zhai, Y. Zhang, Inorg. Chem. 60, 6559–6568 (2021)

    Article  CAS  Google Scholar 

  19. S.D. Xu, R. Hao, Z. Yan, S.T. Hou, Z.H. Peng, D. Wu, P.F. Liang, X.L. Chao, L.L. Wei, Z.P. Yang, J. Eur. Ceram. Soc. 42, 2781–2788 (2022)

    Article  CAS  Google Scholar 

  20. W. Feng, S. Long, Y. Wan, D. Zhang, J. Asian Ceram. Soc. 10, 396–404 (2022)

    Article  Google Scholar 

  21. C. Oses, C. Toher, S. Curtarolo, Nat. Rev. Mater. 5(4), 295–309 (2020)

    Article  CAS  Google Scholar 

  22. T. Cui, J. Zhang, J. Guo, X.J. Li, S. Guo, Y. Huan, J. Wang, S.-T. Zhang, J. Mater. Chem. A 10, 14316–14325 (2022)

    Article  CAS  Google Scholar 

  23. L. Wei, Z. Yang, X. Han, Z. Li, J. Mater. Res. 27, 979–984 (2012)

    Article  CAS  Google Scholar 

  24. R.Q. Yin, P. Zheng, J.C. Wang, B.W. Dai, L.M. Zheng, J. Du, L. Zheng, J.X. Deng, K.X. Song, H. B. Qin. Ceram. Int. 42, 10349–10354 (2016)

    Article  CAS  Google Scholar 

  25. Z. Wang, P. Peng, L. Zhang, N. Wang, B. Tang, B. Cui, J. Liu, D. Xu, J. Mater. Sci. Mater. Electron. 33, 6283–6293 (2022)

    CAS  Google Scholar 

  26. Z. Wang, L. Zhang, J. Liu, Z. Jiang, L. Zhang, Y. Jiu, B. Tang, D. Xu, ECS J. Solid State Sci. Technol. 11, 093002 (2022)

    Article  Google Scholar 

  27. X. Han, L. Wei, Z. Yang, T. Zhang. Ceram. Int. 39, 4853–4860 (2013)

    Article  CAS  Google Scholar 

  28. R. Li, Y. Pu, Q. Zhang, W. Wang, J. Li, X. Du, M. Chen, X. Zhang, Z. Sun, J. Eur. Ceram. Soc. 40, 4509–4516 (2020)

    Article  CAS  Google Scholar 

  29. W.B. Li, D. Zhou, R. Xu, L.-X. Pang, I.M. Reaney, ACS Appl. Energy Mater. 1, 5016–5023 (2018)

    Article  CAS  Google Scholar 

  30. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Prog Mater. Sci. 102, 72–108 (2019)

    Article  CAS  Google Scholar 

  31. J.J. Lima-Silva, D. Garcia, J. Mendes Filho, J.A. Eiras, A.P. Ayala, Phys. Status Solidi B 241, 2001–2006 (2004)

    Article  CAS  Google Scholar 

  32. J.L.B. Faria, P.T.C. Freire, A.P. Ayala, F.E.A. Melo, J. Mendes Filho, C.W.A. Paschoal, I.A. Santos, J.A. Eiras, J. Raman Spectrosc. 34, 826–830 (2003)

    Article  CAS  Google Scholar 

  33. J. Tang, A.C. Albrecht, J. Chem. Phys. 49, 1144–1154 (1968)

    Article  CAS  Google Scholar 

  34. L.A. Woodward, D.A. Long, Trans. Faraday Soc. 45, 1131–1141 (1949)

    Article  CAS  Google Scholar 

  35. H. Pan, F. Li, Y. Liu, Q.H. Zhang, M. Wang, S. Lan, Y.P. Zheng, J. Ma, L. Gu, Y. Shen, P. Yu, S.J. Zhang, L.Q. Chen, Y.H. Lin, C.W. Nan, Science 365, 578–582 (2019)

    Article  CAS  Google Scholar 

  36. L. Cao, Y. Yuan, X. Zhang, E. Li, S. Zhang, ACS Sustain. Chem. Eng. 8, 17527–17539 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 52102134, the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant No. 20KJB430024, and High-Level Innovative and Entrepreneurial Personnel Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, writing of the original draft, and funding acquisition were accomplished by WBF; material preparation and data collection were performed by YFX; material preparation, data collection, and analysis were performed by XGL; investigation and formal analysis were performed by YYW; and formal analysis and writing, reviewing, and editing of the manuscript were accomplished by JJY. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenbin Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Xu, Y., Li, X. et al. Enhanced energy storage properties in Sr1.85Ca0.15NaNb5O15-based tungsten bronze ceramics through multicomponent substitution. J Mater Sci: Mater Electron 34, 117 (2023). https://doi.org/10.1007/s10854-022-09486-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09486-x

Navigation