Skip to main content
Log in

Effects of polymerization oxidants on the fabrication of electrospun PPy/WO3 composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, polypyrrole (PPy) and incomplete polymerized pyrrole (Pyr) were synthesized from pyrrole monomer via chemical oxidative polymerization using two different oxidants: ammonium persulfate (APS) and ammonium bisulfate (ABS). Electrical, structural, and morphological characteristics of PPy and Pyr are examined through electrical conductivity test, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), respectively. The presence of tungsten oxide (WO3) and PPy/WO3 was likewise confirmed by FTIR and XRD. PPy synthesized with APS showed conductivity of 0.53 S/m, while Pyr synthesized with ABS had conductivity of 1.39 × 10− 7 S/m. PPy with higher conductivity was used for hybridization with WO3 and for subsequent electrospinning. The presence of NH stretching in Pyr which is absent in PPy indicates the NH stretch from pyrrole. Further processing showed a successful electrospinning of PPy and PPy/WO3 with the aid of PU as copolymer. Electrospun PPy/PU displayed globular morphology, while electrospun PPy/PU/WO3 exhibited fibrous morphology. From this study, it is inferred that electrical conductivity is a crucial factor in ensuring a successful electrospinning of fibrous conductive polymer materials. In addition, APS has polymerized pyrrole successfully, while use of ABS yields an incomplete pyrrole polymerization. With further parameter improvement, ABS can be potentially used as an alternative oxidant for polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data included as electronic supplement material.

References

  1. A.T. Mane, S.T. Navale, V.B. Patil, Room temperature NO2 gas sensing properties of DBSA doped PPy–WO3 hybrid nanocomposite sensor. Org. Electron. 19, 15–25 (2015)

    Article  CAS  Google Scholar 

  2. Y. Wang et al., Facile synthesis of porous α-Fe2O3 nanorods and their application in ethanol sensors. J. Phys. Chem. C 112(46), 17804–17808 (2008)

    Article  CAS  Google Scholar 

  3. S. Pawar et al., Nanocrystalline TiO 2 thin films for NH 3 monitoring: microstructural and physical characterization. J. Mater. Sci.: Mater. Electron. 23(1), 273–279 (2012)

    CAS  Google Scholar 

  4. H. Jamalabadi, N. Alizadeh, Enhanced low-temperature response of PPy-WO 3 hybrid nanocomposite based gas sensor deposited by electrospinning method for selective and sensitive acetone detection. IEEE Sens. J. 17(8), 2322–2328 (2017)

    Article  CAS  Google Scholar 

  5. J. Zhu et al., Conductive polypyrrole/tungsten oxide metacomposites with negative permittivity. J. Phys. Chem. C 114(39), 16335–16342 (2010)

    Article  CAS  Google Scholar 

  6. P. Salazar et al., Characterization and application of a new pH sensor based on magnetron sputtered porous WO3 thin films deposited at oblique angles. Electrochim. Acta 193, 24–31 (2016)

    Article  CAS  Google Scholar 

  7. D.K. Gaikwad et al., Influence of disordered morphology on electrochromic stability of WO3/PPy. J. Alloys Compd. 669, 240–245 (2016)

    Article  CAS  Google Scholar 

  8. S.V. Ebadi et al., Synthesis and characterization of a novel polyurethane/polypyrrole-p‐toluenesulfonate (PU/PPy‐pTS) electroactive nanofibrous bending actuator. Polym. Adv. Technol. 30(9), 2261–2274 (2019)

    Article  CAS  Google Scholar 

  9. J.Y. Lee et al., Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26), 4325–4335 (2009)

    Article  CAS  Google Scholar 

  10. W.A. Hammed et al., Processable dodecylbenzene sulfonic acid (DBSA) doped poly(N-vinyl carbazole)-poly(pyrrole) for optoelectronic applications. Des. Monomers Polym. 20(1), 368–377 (2017)

    Article  CAS  Google Scholar 

  11. Y.C. Wong et al., Conducting polymers as chemiresistive gas sensing materials: a review. J. Electrochem. Soc. 167(3), 037503 (2019)

    Article  Google Scholar 

  12. S. Khammarnia et al., Enhanced catalytic activity of Pt-NdFeO3 nanoparticles supported on polyaniline-chitosan composite towards methanol electro-oxidation reaction. J. Nanostruct. 10(2), 239–257 (2020)

    CAS  Google Scholar 

  13. M.-S. Ekrami-Kakhki et al., Enhanced electrocatalytic performance of Pt Nanoparticles incorporated CeO2 Nanorods on polyaniline-Chitosan support for methanol electrooxidation (experimental and statistical analysis). J. Cluster Sci. 32(2), 363–378 (2021)

    Article  CAS  Google Scholar 

  14. M. Yanilmaz et al., Preparation and characterization of electrospun polyurethane—polypyrrole nanofibers and films. J. Appl. Polym. Sci. 125(5), 4100–4108 (2012)

    Article  CAS  Google Scholar 

  15. E. Tavakkol et al., Production of conductive electrospun polypyrrole/poly (vinyl pyrrolidone) nanofibers. Synth. Met. 231, 95–106 (2017)

    Article  CAS  Google Scholar 

  16. A.T. Mane et al., Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature. Org. Electron. 16, 195–204 (2015)

    Article  CAS  Google Scholar 

  17. L. Geng, Gas sensitivity study of polypyrrole/WO3 hybrid materials to H2S. Synth. Met. 160(15–16), 1708–1711 (2010)

    Article  CAS  Google Scholar 

  18. J. Sun et al., Preparation of polypyrrole@WO3 hybrids with p-n heterojunction and sensing performance to triethylamine at room temperature. Sens. Actuators B 238, 510–517 (2017)

    Article  CAS  Google Scholar 

  19. A.T. Mane et al., Microstructural, optical and electrical transport properties of WO3 nanoparticles coated polypyrrole hybrid nanocomposites. Synth. Met. 199, 187–195 (2015)

    Article  CAS  Google Scholar 

  20. T.A. Ho, T.-S. Jun, Y.S. Kim, Material and NH3-sensing properties of polypyrrole-coated tungsten oxide nanofibers. Sens. Actuators B 185, 523–529 (2013)

    Article  CAS  Google Scholar 

  21. Y. Cong, S. Liu, H. Chen, Fabrication of conductive polypyrrole nanofibers by electrospinning Journal of Nanomaterials, 2013

  22. A.P. Kishan, E.M. Cosgriff-Hernandez, Recent advancements in electrospinning design for tissue engineering applications: a review. J. Biomed. Mater. Res. A 105(10), 2892–2905 (2017)

    Article  CAS  Google Scholar 

  23. Y.-W. Ju et al., Electrochemical properties of polypyrrole/sulfonted SEBS composite nanofibers prepared by electrospinning. Electrochim. Acta 52(14), 4841–4847 (2007)

    Article  CAS  Google Scholar 

  24. A. Naeimi, M.S. Ekrami-Kakhki, High catalytic performance of the first electrospun nano‐biohybrid, Mn3O4/copper complex/polyvinyl alcohol, from Amaranthus spinosus plant for biomimetic oxidation reactions. Appl. Organomet. Chem. 34(4), e5453 (2020)

    Article  CAS  Google Scholar 

  25. Y. Liao et al., Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications. Prog. Polym. Sci. 77, 69–94 (2018)

    Article  CAS  Google Scholar 

  26. A. Akbarinejad et al., Electrospun soluble conductive polypyrrole nanoparticles for fabrication of highly selective n-butylamine gas sensor. Sens. Actuators B 236, 99–108 (2016)

    Article  CAS  Google Scholar 

  27. S.V. Ebadi et al., Highly conductive faradaic artificial muscle based on nanostructured polypyrrole-bis (trifluoromethylsulfonyl) imide synthesized onto electrospun polyurethane nanofibers. Sens. Actuators B 297, 126736 (2019)

    Article  CAS  Google Scholar 

  28. T. Blachowicz, A. Ehrmann, Conductive electrospun nanofiber Mats. Materials 13(1), 152 (2020)

    CAS  Google Scholar 

  29. A. Baptista et al., Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries. J. Mater. Chem. A 6(1), 256–265 (2018)

    Article  CAS  Google Scholar 

  30. T.S. Kang et al., Electrically conducting polypyrrole fibers spun by electrospinning. Synth. Met. 153(1–3), 61–64 (2005)

    Article  CAS  Google Scholar 

  31. A.A. Jatratkar et al., Consequence of oxidant to monomer ratio on optical and structural properties of Polypyrrole thin film deposited by oxidation polymerization technique. J. Phys. Chem. Solids 80, 78–83 (2015)

    Article  CAS  Google Scholar 

  32. A.S. Sarac, Redox polymerization. Prog. Polym. Sci. 24(8), 1149–1204 (1999)

    Article  CAS  Google Scholar 

  33. R. Pepinsky et al., Ammonium hydrogen sulfate: a new ferroelectric with low coercive field. Phys. Rev. 111(6), 1508 (1958)

    Article  CAS  Google Scholar 

  34. A. Yussuf et al., Synthesis and characterization of conductive polypyrrole: the influence of the oxidants and monomer on the electrical, thermal, and morphological properties International Journal of Polymer Science, 2018. 2018

  35. N.Y. Abu-Thabit, Chemical oxidative polymerization of polyaniline: a practical approach for preparation of smart conductive textiles. J. Chem. Educ. 93(9), 1606–1611 (2016)

    Article  CAS  Google Scholar 

  36. I.Y. Sapurina, M. Shishov, Oxidative polymerization of aniline: molecular synthesis of polyaniline and the formation of supramolecular structures. New Polym. Special Appl 740(7), 272 (2012)

    Google Scholar 

  37. H. Allcock, F. Lampe, J. Mark, Contemporary Polymer Chemistry 3 (Prentice-Hall, Englewood Cliffs, 2004)

    Google Scholar 

  38. A. Prasher et al., Alcohol mediated degenerate chain transfer controlled cationic polymerisation of para-alkoxystyrene. Polym. Chem. 10(30), 4126–4133 (2019)

    Article  CAS  Google Scholar 

  39. J.-B. Yu et al., Analysis of diabetic patient’s breath with conducting polymer sensor array. Sens. Actuators B 108(1–2), 305–308 (2005)

    Article  CAS  Google Scholar 

  40. J.Y. Lee et al., A Polypyrrole Solution in Chloroform Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 2006. 280(1): p. 135–144

  41. E.A. Sanches et al., Nanostructured polypyrrole powder: a structural and morphological characterization. J. Nanomater. 2015(1), 1–8 (2015)

    Article  Google Scholar 

  42. A. Haider, S. Haider, I.-K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 11(8), 1165–1188 (2018)

    Article  CAS  Google Scholar 

  43. S.T. Navale et al., Highly selective and sensitive room temperature NO2 gas sensor based on polypyrrole thin films. Synth. Met. 189, 94–99 (2014)

    Article  CAS  Google Scholar 

  44. N. Van Hieu et al., Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room temperature. Sens. Actuators B 140(2), 500–507 (2009)

    Article  Google Scholar 

  45. M. Silakhori et al., Palmitic acid/polypyrrole composites as form-stable phase change materials for thermal energy storage. Energy. Conv. Manag. 80, 491–497 (2014)

    Article  CAS  Google Scholar 

  46. M.A. Chougule et al., Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci. Lett. 1(01), 6 (2011)

    Article  CAS  Google Scholar 

  47. T. Vishnuvardhan et al., Synthesis, characterization and ac conductivity of polypyrrole/Y 2 O 3 composites. Bull. Mater. Sci. 29(1), 77–83 (2006)

    Article  CAS  Google Scholar 

  48. P. Song, Q. Wang, Z. Yang, Ammonia gas sensor based on PPy/ZnSnO3 nanocomposites. Mater. Lett. 65(3), 430–432 (2011)

    Article  CAS  Google Scholar 

  49. S. Sakthivel, A. Boopathi, Synthesis and characterization of polypyrrole (PPY) thin film by spin coating technique. J. Chem. Chem. Sci. 4, 150–155 (2014)

    Google Scholar 

  50. M.A. Chougule et al., Polypyrrole thin film: room temperature ammonia gas sensor. IEEE Sens. J. 11(9), 2137–2141 (2011)

    Article  CAS  Google Scholar 

  51. H. Kato et al., Fourier transform infrared spectroscopy study of conducting polymer polypyrrole: higher order structure of electrochemically-synthesized film. J. Phys. Chem. 95(15), 6014–6016 (1991)

    Article  CAS  Google Scholar 

  52. B. Yeole et al., Electrical and gas sensing behaviour of polypyrrole/silver sulphide nanocomposites. Am. J. Sens. Technol. 4(1), 10–20 (2017)

    Google Scholar 

  53. J.G. Roh et al., Oxidant effects on polypyrrole and polyaniline sensor for several volatile organic gases. J. Macromolecular Sci. Part A 39(10), 1095–1105 (2002)

    Article  Google Scholar 

  54. N. Arsalani, K. Geckeler, Novel electrically conducting polymer hybrids with polypyrrole. React. Funct Polym 33(2–3), 167–172 (1997)

    Article  CAS  Google Scholar 

  55. Y. Kudoh, Properties of polypyrrole prepared by chemical polymerization using aqueous solution containing Fe2 (SO4) 3 and anionic surfactant. Synth. Met. 79(1), 17–22 (1996)

    Article  CAS  Google Scholar 

  56. S.S. Shinde et al., Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochim. Acta 119, 1–10 (2014)

    Article  CAS  Google Scholar 

  57. T.W.G. Solomons, C. Fryhle, Organic Chemistry (Wiley, 2009)

  58. F.F. Bruno et al., Biomimetic synthesis of water soluble conductive polypyrrole and Poly (3, 4-Ethylenedioxythiophene). J. Macromolecular Sci. Part A 40(12), 1327–1333 (2003)

    Article  Google Scholar 

  59. I. Ibrahim, S. Yunus, M. Hashim, Relative performance of isopropylamine, pyrrole and pyridine as corrosion inhibitors for carbon steels in saline water at mildly elevated temperatures. Int. J. Sci. Eng. Res 4(2), 1–12 (2013)

    Google Scholar 

  60. T.-L. Hsieh et al., Controlled synthesis of uniform hollow polypyrrole microcapsules by a cosolvent approach. SN Appl. Sci 1(4), 1–10 (2019)

    Article  Google Scholar 

  61. B.C. Smith, Infrared Spectral Interpretation: A Systematic Approach (CRC press, 2018)

  62. K.T. Song et al., Solvent effects on the characteristics of soluble polypyrrole. Synth. Met. 110(1), 57–63 (2000)

    Article  CAS  Google Scholar 

  63. S.P. Usha, A.M. Shrivastav, B.D. Gupta, A contemporary approach for design and characterization of fiber-optic-cortisol sensor tailoring LMR and ZnO/PPY molecularly imprinted film. Biosens. Bioelectron. 87, 178–186 (2017)

    Article  CAS  Google Scholar 

  64. I.S. Chronakis, S. Grapenson, A. Jakob, Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties. Polymer 47(5), 1597–1603 (2006)

    Article  CAS  Google Scholar 

  65. U. Lange, N.V. Roznyatouskaya, V.M. Mirsky, Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 614(1), 1–26 (2008)

    Article  CAS  Google Scholar 

  66. L. Xia, Z.X. Wei, M.X. Wan, Conducting polymer nanostructures and their application in biosensors. J. Colloid Interface Sci. 341(1), 1–11 (2010)

    Article  CAS  Google Scholar 

  67. M.M. Gvozdenović et al., Electrochemical synthesis of electroconducting polymers. Hemijska Industrija 68(6), 673–684 (2014)

    Article  Google Scholar 

  68. N.K. Guimard, N. Gomez, C.E. Schmidt, Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32(8–9), 876–921 (2007)

    Article  CAS  Google Scholar 

  69. S. Kulkarni et al., Synthesis, structural, compositional, morphological and optoelectronic properties of tungsten oxide thin films. J. Mater. Sci.: Mater. Electron. 26(2), 1087–1096 (2015)

    CAS  Google Scholar 

  70. S. Terohid et al., Effect of growth time on structural, morphological and electrical properties of tungsten oxide nanowire. Appl. Phys. A 124(8), 1–9 (2018)

    Article  CAS  Google Scholar 

  71. C.S. Rout, M. Hegde, C.N.R. Rao, H2S sensors based on tungsten oxide nanostructures. Sens. Actuators B 128(2), 488–493 (2008)

    Article  CAS  Google Scholar 

  72. P. Van Tong et al., Diameter controlled synthesis of tungsten oxide nanorod bundles for highly sensitive NO2 gas sensors. Sens. Actuators B 183, 372–380 (2013)

    Article  CAS  Google Scholar 

  73. S.-H. Wang, T.-C. Chou, C.-C. Liu, Nano-crystalline tungsten oxide NO2 sensor. Sens. Actuators B 94(3), 343–351 (2003)

    Article  CAS  Google Scholar 

  74. C. Dulgerbaki, A.U. Oksuz, Fabricating polypyrrole/tungsten oxide hybrid based electrochromic devices using different ionic liquids. Polym. Adv. Technol. 27(1), 73–81 (2016)

    Article  CAS  Google Scholar 

  75. P.-G. Su, Y.-T. Peng, Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in-situ photopolymerization. Sens. Actuators B 193, 637–643 (2014)

    Article  CAS  Google Scholar 

  76. A.T. Mane et al., Synthesis and structural, morphological, compositional, optical and electrical properties of DBSA-doped PPy–WO3 nanocomposites. Prog. Org. Coat 87, 88–94 (2015)

    Article  CAS  Google Scholar 

  77. A. Joshi, S.A. Gangal, S.K. Gupta, Ammonia sensing properties of polypyrrole thin films at room temperature. Sens. Actuators B 156(2), 938–942 (2011)

    Article  CAS  Google Scholar 

  78. X. Li et al., Fabrication of polyacrylonitrile/polypyrrole (PAN/Ppy) composite nanofibres and nanospheres with core–shell structures by electrospinning. Mater. Lett. 62(8–9), 1155–1158 (2008)

    Article  CAS  Google Scholar 

  79. M. Omastová et al., Effect of polymerization conditions on the properties of polypyrrole prepared in the presence of sodium bis(2-ethylhexyl) sulfosuccinate. Synth. Met. 143(2), 153–161 (2004)

    Article  Google Scholar 

  80. A. Oroumei, H. Tavanai, M. Morshed, Hysteresis phenomenon in heat–voltage curves of polypyrrole-coated electrospun nanofibrous and regular fibrous mats. J. Electron. Mater. 44(7), 2250–2259 (2015)

    Article  CAS  Google Scholar 

  81. J. Thunberg et al., In situ synthesis of conductive polypyrrole on electrospun cellulose nanofibers: scaffold for neural tissue engineering. Cellulose 22(3), 1459–1467 (2015)

    Article  CAS  Google Scholar 

  82. Y. Whang et al., Chemical synthesis of highly electrically conductive polymers by control of oxidation potential. Synth. Met. 43(1–2), 3043–3048 (1991)

    Article  CAS  Google Scholar 

  83. H. Bagheri, O. Rezvani, S. Banihashemi, Core–shell electrospun polybutylene terephthalate/polypyrrole hollow nanofibers for micro-solid phase extraction. J. Chromatogr. A 1434, 19–28 (2016)

    Article  CAS  Google Scholar 

  84. C. Merlini et al., Electrically pressure sensitive poly (vinylidene fluoride)/polypyrrole electrospun mats. RSC Adv. 4(30), 15749–15758 (2014)

    Article  CAS  Google Scholar 

  85. H. Wang et al., Polypyrrole-coated electrospun nanofibre membranes for recovery of au (III) from aqueous solution. J. Membr. Sci. 303(1–2), 119–125 (2007)

    Article  CAS  Google Scholar 

  86. C. Merlini et al., A comparative study of aligned and random electrospun mats of thermoplastic polyurethane and conductive additives based on polypyrrole. Polym. Test 70, 486–497 (2018)

    Article  CAS  Google Scholar 

  87. B. Li et al., A solvent system involved fabricating electrospun polyurethane nanofibers for biomedical applications. Polymers 12(12), 3038 (2020)

    Article  CAS  Google Scholar 

  88. C. Sasso et al., Polypyrrole and polypyrrole/wood-derived materials conducting composites: a review. BioResources, 2011. 6(3)

  89. A. Kausaite-Minkstimiene et al., Evaluation of chemical synthesis of polypyrrole particles. Colloids Surf., A 483, 224–231 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Ministry of Higher Education (MOHE) Malaysia via Fundamental Research Grant Scheme (Grant No: FRGS/1/2022/TK09/UM/02/33) and Universiti Malaya (UM) via Faculty Research Grant (No: GPF060B-2020) are gratefully acknowledged.

Funding

This study was supported by Ministry of Higher Education (MOHE) Malaysia via Fundamental Research Grant Scheme (Grant No: FRGS/1/2022/TK09/UM/02/33) and Universiti Malaya via Faculty Research Grant (Grant No: GPF060B-2020).

Author information

Authors and Affiliations

Authors

Contributions

YCW contributed to methodology, formal analysis, investigation, data curation, and writing of the original draft. YHW contributed to conceptualization, validation, resources, reviewing & editing of the manuscript, visualization, supervision, project administration, and funding acquisition. BCA contributed to validation, visualization, supervision, and writing, reviewing, & editing of the manuscript. AB contributed to data curation and writing of the original draft. ASMAH contributed to validation, visualization, supervision, and writing, reviewing, & editing of the manuscript.

Corresponding authors

Correspondence to Yew Hoong Wong or Bee Chin Ang.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest.

Research involving human and animal rights

Not applicable. This work does not involve human participants and/or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, Y.C., Wong, Y.H., Ang, B.C. et al. Effects of polymerization oxidants on the fabrication of electrospun PPy/WO3 composites. J Mater Sci: Mater Electron 34, 33 (2023). https://doi.org/10.1007/s10854-022-09483-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09483-0

Navigation