Skip to main content
Log in

Variation of electrical and dielectric characteristics of Schottky diodes (SDs) depending on the existence of PVC and carbon-nanotube (CNT)-doped PVC interlayers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here, the effects of PVC and carbon-nanotube (CNT)-doped PVC interlayers on the electrical and dielectric properties of Au/(n-Si) Schottky diode (SD) were investigated through the current/voltage (I−V) and impedance–frequency (Z–f) data. Ideality factor (n), barrier height (ΦB), rectification ratio (RR), series (RS), and shunt (RSh) resistance were evaluated from the I−V plots using a variety of methods. The interlayer effects on the surface states (NSS) of the structure were investigated via voltage-dependent n and ΦB values. Lastly, current conduction mechanisms of the structures for both reverse and forward voltages were determined. Dielectric characteristics for instance complex-dielectric constant (ε*), complex-electric modulus (M*), and ac electrical conductivity (σac), and RS values were designated from the Z–f measurements. Experimental results reveal that the favorable effects of the presence of PVC and PVC:CNT interlayers on the properties of the MS structure and so can be good candidates for electronic applications instead of the traditional MS structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. K. Sreenu, C. Venkata Prasad, V. Rajagopal Reddy, Barrier parameters and current transport characteristics of Ti/p-InP Schottky junction modified using orange G (OG) organic interlayer. J. Electron. Mater. 46, 5746–5754 (2017)

    Article  CAS  Google Scholar 

  2. A. Tataroğlu, Ş. Altındal, Y. Azizian-Kalandaragh, Comparison of electrical properties of MS and MPS type diode in respect of (In2O3-PVP) interlayer. Phys. B: Phys. Condensed Matter 576, 411733 (2020)

    Article  Google Scholar 

  3. V. Rajagopal Reddy, Electrical properties of Au/polyvinylidene fluoride/n-InP Schottky diode with polymer interlayer. Thin Solid Films 556, 300–306 (2014)

    Article  Google Scholar 

  4. Y. Badali, J. Farazin, G. Pirgholi-Givi, Ş. Altındal, Y. Azizian-Kalandaragh, Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP dielectrics in metal–semiconductor structures. Appl. Phys. A 127, 695 (2021)

    Article  CAS  Google Scholar 

  5. E. Erbilen Tanrıkulu, Ş. Altındal, Y. Azizian-Kalandaragh, Preparation of (CuS–PVA) interlayer and the investigation their structural, morphological and optical properties and frequency dependent electrical characteristics of Au/(CuS–PVA)/n-Si (MPS) structures. J. Mater. Sci.: Mater. Electron. 29, 11801–11811 (2018)

    Google Scholar 

  6. S. Demirezen, A. Kaya, Ö. Vural, Ş. Altındal, The effect of Mo-doped PVC+TCNQ interfacial layer on the electrical properties of Au/PVC+TCNQ/p-Si structures at room temperature. Mater. Sci. Semicond. Process. 33, 140–148 (2015)

    Article  CAS  Google Scholar 

  7. H.E. Lapa, A. Kökce, D.A. Aldemir, A.F. Özdemir, Ş. Altındal, Effect of illumination on electrical parameters of Au/(P3DMTFT)/n-GaAs Schottky barrier diodes. Indian J. Phys. 94, 1901–1908 (2020)

    Article  CAS  Google Scholar 

  8. V. Janardhanam, I. Jyothi, S.-H. Yuk, C.-J. Choi, H.-J. Yun, J. Won, W.-G. Hong, S.-N. Lee, V.R. Reddy, Modification of Schottky barrier properties of Al/p-type Si Schottky rectifiers with graphene-oxide-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) interlayer. J. Vac. Sci. Technol., B 35, 021212 (2017)

    Article  Google Scholar 

  9. G. Ersöz, İ. Yücedağ, S. Bayrakdar, Ş. Altındal, A. Gümüş, Investigation of photo-induced effect on electrical properties of Au/PPy/n-Si (MPS) type schottky barrier diodes. J. Mater. Sci.: Mater. Electron. 28, 6413–6420 (2017)

    Google Scholar 

  10. S. Altındal Yerişkin, Y. Şafak Asar, Influence of graphene doping rate in PVA organic thin film on the performance of Al/p-Si structure. J. Mater. Sci.; Mater. Electron. 32, 22860–22867 (2022)

    Article  Google Scholar 

  11. M. Ulusoy, Ş. Altındal, P. Durmuş, S. Özçelik, Y. Azizian-Kalandaragh, Frequency and voltage-dependent electrical parameters, interface traps, and series resistance profile of Au/(NiS:PVP)/n-Si structures. J. Mater. Sci.: Mater. Electron. 32, 13693–13707 (2021)

    CAS  Google Scholar 

  12. Ş. Altındal, A. Barkhordari, S. Özçelik, G. Pirgholi-Givi, H.R. Mashayekhi, Y. Azizian-Kalandaragh, A comparison of electrical characteristics of Au/n-Si (MS) structures with PVC and (PVC: Sm2O3) polymer interlayer. Phys. Scr. 96, 125838 (2021)

    Article  Google Scholar 

  13. S.O. Tan, Comparison of graphene and zinc dopant materials for organic polymer interfacial layer between metal semiconductor structure. IEEE Trans. Electron Devices 64, 5121–5127 (2017)

    Article  CAS  Google Scholar 

  14. W.V. Titow, PVC Technology, 4th edn. (Elsevier, London, 1984)

    Book  Google Scholar 

  15. T. Uma, T. Mahalingam, U. Stimming, Solid polymer electrolytes based on poly(vinylchloride)–lithium sulfate. Mater. Chem. Phys. 90, 239–244 (2005)

    Article  CAS  Google Scholar 

  16. A. Manuel Stephan, T. Prem Kumar, N.G. Renganathan, S. Pitchumani, R. Thirunakaran, N. Muniyandi, Ionic conductivity and FT-IR studies on plasticized PVC/PMMA blend polymer electrolytes. J. Power Sources 89, 80–87 (2000)

    Article  Google Scholar 

  17. S. Rajendran, T. Uma, Conductivity studies on PVC/PMMA polymer blend electrolyte. Mater. Lett. 44, 242–247 (2000)

    Article  CAS  Google Scholar 

  18. M.O. Erdal, M. Koyuncu, K. Doğan, T. Öztürk, A. Kocyigit, M. Yıldırım, The modification of the characteristics of ZnO nanofibers by TCNQ doping content. J. Mater. Sci.: Mater. Electron. 32, 17220–17229 (2021)

    CAS  Google Scholar 

  19. M. Moniruzzaman, K.I. Winey, Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)

    Article  CAS  Google Scholar 

  20. O. Breuer, U. Sundararaj, Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym. Compos. 25, 630–645 (2004)

    Article  CAS  Google Scholar 

  21. Y.P. Mamunya, V.V. Levchenko, A. Rybak, G. Boiteux, E.V. Lebedev, J. Ulanski, G. Seytre, Electrical and thermomechanical properties of segregated nanocomposites based on PVC and multiwalled carbon nanotubes. J. Non-Cryst. Solids 356, 635–641 (2010)

    Article  CAS  Google Scholar 

  22. G. Broza, K. Piszczek, K. Schulte, T. Sterzynski, Nanocomposites of poly(vinyl chloride) with carbon nanotubes (CNT). Compos. Sci. Technol. 67, 890–894 (2007)

    Article  CAS  Google Scholar 

  23. T. Sterzynski, J. Tomaszewska, K. Piszczek, K. Skórczewska, The influence of carbon nanotubes on the PVC glass transition temperature. Compos. Sci. Technol. 70, 966–969 (2010)

    Article  CAS  Google Scholar 

  24. Y. Azizian-Kalandaragh, J. Farazin, Ş. Altindal, M. Shahedi Asl, G. Pirgholi-Givi, S.A. Delbari, A. Sabahi Namini, Electrical and dielectric properties of Al/(PVP:Zn-TeO2)/ p-Si heterojunction structures using current–voltage (I–V) and impedance-frequency (Z–f) measurements. Appl. Phys. A 126, 635 (2020)

    Article  CAS  Google Scholar 

  25. A. Barkhordari, S. Özçelik, G. Pirgholi-Givi, H.R. Mashayekhi, Ş. Altındal, Y. Azizian-Kalandaragh, Dielectric properties of PVP:BaTiO3 interlayer in the Al/PVP:BaTiO3/P-Si structure. Silicon 14, 5437–5443 (2021)

    Article  Google Scholar 

  26. M.H. Najar, K. Majid, M.A. Dar, Electric modulus based relaxation dynamics, ac-conductivity and I-V characteristics in PTh/[Co(EDTA)NH3Cl] H2O nanocomposite prepared by chemical oxidation method. J. Mater. Sci.: Mater. Electron. 28, 11243–11252 (2017)

    CAS  Google Scholar 

  27. M.L. Verma, H.D. Sahu, Study on ionic conductivity and dielectric properties of PEO-based solid nanocomposite polymer electrolytes. Ionics 23, 2339–2350 (2017)

    Article  CAS  Google Scholar 

  28. E. Erbilen Tanrıkulu, S. Altındal Yerişkin, On the changes in the dielectric, electric modulus, and ac electrical-conductivity in the Al/(C29H32O17)/p-Si (MPS) structures in wide range of frequency and voltage. Physica B 623, 413345 (2021)

    Article  Google Scholar 

  29. S. Amrin, V.D. Deshpande, Dielectric relaxation and ac conductivity behavior of carboxyl functionalized multiwalled carbon nanotubes/poly (vinyl alcohol) composites. Physica E 87, 317–326 (2017)

    Article  CAS  Google Scholar 

  30. H. Soleimani, M.K. Baig, N. Yahya, L. Khodapanah, M. Sabet, B.M.R. Demiral, M. Burda, Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding. Results Phys. 9, 39–48 (2018)

    Article  Google Scholar 

  31. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  32. S. Ashajyothi, V. Rajagopal Reddy, Influence of tin oxide (SnO2) interlayer on the electrical and reverse current conduction mechanism of Au/n-InP Schottky junction and its microstructural properties. Thin Solid Films 740, 139001 (2021)

    Article  CAS  Google Scholar 

  33. A. Tataroglu, A. Buyukbas Ulusan, Ş. Altındal, Y. Azizian-Kalandaragh, A compare study on electrical properties of MS diodes with and without CoFe2O4-PVP interlayer. J. Inorg. Organomet. Polym. Mater. 31, 1668–1675 (2021)

    Article  CAS  Google Scholar 

  34. J. Farazin, M.S. Asl, G. Pirgholi-Givi, S.A. Delbari, A.S. Namini, Ş. Altındal, Y. Azizian-Kalandaragh, Effect of (Co–TeO2-doped polyvinylpyrrolidone) organic interlayer on the electrophysical characteristics of Al/p-Si (MS) structures. J. Mater. Sci.: Mater. Electron. 32, 21909–21922 (2021)

    CAS  Google Scholar 

  35. A. Eroğlu, S. Demirezen, Y. Azizian-Kalandaragh, Ş. Altındal, A comparative study on the electrical properties and conduction mechanisms of Au/n-Si Schottky diodes with/without an organic interlayer. J. Mater. Sci.: Mater. Electron. 31, 14466–14477 (2020)

    Google Scholar 

  36. A. Tataroğlu, Ş. Altındal, Y. Azizian-Kalandaragh, Electrical characterization of Au/n-Si (MS) diode with and without graphene-polyvinylpyrrolidone (Gr- PVP) interface layer. J. Mater. Sci.: Mater. Electron. 32, 3451–3459 (2021)

    Google Scholar 

  37. A. Buyukbas Ulusan, A. Tataroglu, Ş. Altındal, Y. Azizian-Kalandaragh, Photoresponse characteristics of Au/(CoFe2O4-PVP)/n-Si/Au (MPS) diode. J. Mater. Sci.: Mater. Electron. 32, 15732–15739 (2021)

    Google Scholar 

  38. R.T. Tung, Electron transport at metal-semiconductor interfaces:general theory. Phys. Rev. B 45, 13509–13523 (1992)

    Article  CAS  Google Scholar 

  39. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85 (1986)

    Article  CAS  Google Scholar 

  40. Ş. Altındal, A. Barkhordari, G. Pirgholi-Givi, M. Ulusoy, H. Mashayekhi, S. Özçelik, Y. Azizian-Kalandaragh, Comparison of the electrical and impedance properties of Au/(ZnOMn:PVP)/n-Si (MPS) type Schottky-diodes (SDs) before and after gamma-irradiation. Phys. Scr. 96, 125881 (2021)

    Article  Google Scholar 

  41. A. Büyükbaş-Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, M. Koşal, Double-exponential current–voltage (I–V) and negative capacitance (NC) behavior of Al/(CdSe-PVA)/p-Si/Al (MPS) structure. J. Mater. Sci.: Mater. Electron. 30, 9572–9581 (2019)

    Google Scholar 

  42. Ç. Bilkan, Y. Azizian-Kalandaragh, Ö. Sevgili, Ş. Altındal, Investigation of the efficiencies of the (SnO2-PVA) interlayer in Au/n-Si (MS) SDs on electrical characteristics at room temperature by comparison. J. Mater. Sci.: Mater. Electron. 30, 20479–20488 (2019)

    CAS  Google Scholar 

  43. H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052 (1979)

    Article  CAS  Google Scholar 

  44. K.E. Bohlin, Generalized norde plot including determination of the ideality factor. J. Appl. Phys. 60, 1223 (1986)

    Article  Google Scholar 

  45. A. Turut, D.E. Yıldız, A. Karabulut, İ. Orak, Electrical characteristics of atomic layer deposited Au/Ti/HfO2/n-GaAs MIS diodes in the wide temperature range. J. Mater. Sci.: Mater. Electron. 31, 7839–7849 (2020)

    CAS  Google Scholar 

  46. H.C. Card, E.H. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D Appl. Phys. 3, 1589–1601 (1971)

    Article  Google Scholar 

  47. S. Alptekin, Ş. Altındal, A comparative study on current/capacitance: voltage characteristics of Au/n-Si (MS) structures with and without PVP interlayer. J. Mater. Sci.: Mater. Electron. 30, 6491–6499 (2019)

    CAS  Google Scholar 

  48. C.H. Champness, W.R. Clark, Anomalous inductive effect in selenium Schottky diodes. Appl. Phys. Lett. 56, 1104–1106 (1990)

    Article  CAS  Google Scholar 

  49. L.E. Byrum, G. Ariyawansa, R.C. Jayasinghe, N. Dietz, A.G.U. Perera, S.G. Matsik, I.T. Ferguson, A. Bezinger, H.C. Liu, Negative capacitance in GaN/AlGaN heterojunction dual-band detectors. J. Appl. Phys. 106, 053701 (2009)

    Article  Google Scholar 

  50. R. Joly, S. Girod, N. Adjeroud, P. Grysan, J. Polesel-Maris, Evidence of negative capacitance and capacitance modulation by light and mechanical stimuli in Pt/ZnO/Pt Schottky junctions. Sensors 21, 2253 (2021)

    Article  CAS  Google Scholar 

  51. A. Bobby, N. Shiwakoti, S. Verma, K. Asokan, B.K. Antony, Frequency dependent negative capacitance effect and dielectric properties of swift heavy ion irradiated Ni/oxide/n-GaAs Schottky diode. Physica B 489, 23–27 (2016)

    Article  CAS  Google Scholar 

  52. S. Demirezen, E.E. Tanrıkulu, Ş. Altındal, The study on negative dielectric properties of Al/PVA (Zn-doped)/p-Si (MPS) capacitors. Indian J. Phys. 93, 739–747 (2019)

    Article  CAS  Google Scholar 

  53. J.C. Wong, S. Salahuddin, Negative capacitance transistors. Proc. IEEE 107, 49–62 (2019)

    Article  CAS  Google Scholar 

  54. Z. Wang, H. Li, H. Hu, Y. Fan, R. Fan, B. Li, J. Zhang, H. Liu, J. Fan, H. Hou, F. Dang, Z. Kou, Z. Guo, Direct observation of stable negative capacitance in SrTiO3@BaTiO3 heterostructure. Adv. Electron. Mater. 6, 1901005 (2020)

    Article  CAS  Google Scholar 

  55. F. Ebadi, N. Taghavinia, R. Mohammadpour, A. Hagfeldt, W. Tress, Origin of apparent light-enhanced and negative capacitance in perovskite solar cells. Nat. Commun. 10, 1574 (2019)

    Article  Google Scholar 

  56. E.H. Nicollian, A. Goetzberger, Appl. Phys. Lett. 7, 216–219 (1965)

    Article  CAS  Google Scholar 

  57. P.B. Macedo, C.T. Moynihan, R. Bose, The role of ionic diffusion in polarization in vitreous ionic conductors. Phys. Chem. Glasses 13, 171–179 (1972)

    CAS  Google Scholar 

  58. S. Demirezen, A. Eroğlu, Y. Azizian-Kalandaragh, Ş. Altındal, Electric and dielectric parameters in Au/n-Si (MS) capacitors with metal oxide-polymer interlayer as function of frequency and voltage. J. Mater. Sci.: Mater. Electron. 31, 15589–15598 (2020)

    Google Scholar 

  59. S.K. Barik, R.N.P. Choudhary, A.K. Singh, AC impedance spectroscopy and conductivity studies of Ba0.8Sr0.2TiO3 ceramics. Adv. Mater. Lett. 2, 419–424 (2011)

    Article  CAS  Google Scholar 

  60. S. Türkay, A. Tataroğlu, Complex dielectric permittivity, electric modulus and electrical conductivity analysis of Au/Si3N4/p-GaAs (MOS) capacitor. J. Mater. Sci.: Mater. Electron. 32, 11418–11425 (2021)

    Google Scholar 

  61. Ş. Altındal, M. Ulusoy, S. Özçelik, Y. Azizian-Kalandaragh, On the frequency-dependent complex-dielectric, complex-electric modulus and conductivity in Au/(NiS:PVP)/n-Si structures. J. Mater. Sci.: Mater. Electron. 32, 20071–20081 (2021)

    Google Scholar 

  62. A.Y. Yassina, A.M. Abdelghany, Synthesis and thermal stability, electrical conductivity and dielectric spectroscopic studies of poly (ethylene-co-vinyl alcohol)/graphene oxide nanocomposite. Physica B 608, 412730 (2021)

    Article  Google Scholar 

  63. S.O. Tan, O. Çiçek, Ç.G. Türk, Ş. Altındal, Dielectric properties, electric modulus and conductivity profiles of Al/Al2O3/p-Si type MOS capacitor in large frequency and bias interval. Eng. Sci. Technol., Int. J. 27, 101017 (2022)

    Google Scholar 

  64. S. Demirezen, H.G. Çetinkaya, Ş. Altındal, Doping rate, Interface states and polarization effects on dielectric properties, electric modulus, and ac conductivity in PCBM/NiO: ZnO/p-Si structures in wide frequency range. Silicon 14, 8517–8527 (2022)

    Article  CAS  Google Scholar 

  65. O. Çiçek, G. Koca, Ş. Altındal, High dielectric performance of heterojunction structures based on spin-coated graphene-PVP thin film on silicon with gold contacts for organic electronics. IEEE Trans. Electron. Devices 69, 304–310 (2021)

    Article  Google Scholar 

Download references

Funding

As an only author, I declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Erbilen Tanrıkulu.

Ethics declarations

Conflict of interest

The author declares that she has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erbilen Tanrıkulu, E. Variation of electrical and dielectric characteristics of Schottky diodes (SDs) depending on the existence of PVC and carbon-nanotube (CNT)-doped PVC interlayers. J Mater Sci: Mater Electron 34, 63 (2023). https://doi.org/10.1007/s10854-022-09479-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09479-w

Navigation