Skip to main content
Log in

Systematic study of the influence of the K/Na ratio on the structure, microstructure, and electrical properties of (KxNa1−x)NbO3 lead-free ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free KxNa1−xNbO3 (KNN) ceramics with x = 0.35–0.49 were successfully synthesized and systematically studied. The effects of the K/Na ratio on the electrical properties of the materials were also studied. The results revealed that the KNN ceramics with the K/Na ratio of 41/59 consisted of uniform particles with an average size of 2.21 μm. The particles were tightly packed and suitable for the fabrication of samples with the maximum ceramic density (ρ = 4.36 g/cm3) under conditions of varying compositional ratios. XRD patterns recorded for the KNN ceramics revealed the presence of the pure orthorhombic perovskite phase, in which the lattice parameters increase with an increase in the x value. This resulted in the monotonic shift toward the lower 2θ regions. Furthermore, the experimental results also showed that the KNN ceramic properties were further enhanced by adjusting the Na/K ratio of the A-site. The materials exhibited the best physical, dielectric, and ferroelectric properties (ε = 470, kp = 0.32, kt = 0.5, d33 = 120 pC/N, Pr = 11.6 µC/cm2) when the K/Na ratio was 41/59. In addition, the Wrec, η, Smax, and d33* values tended to increase with an increase in the x value. The maximum values of 0.464 J/cm3, 30.34%, 0.097%, and 241 pm/V, respectively, were recorded at a K/Na ratio of 45/55. Under these conditions, improved energy storage and converse piezoelectric properties could be realized for KNN ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of this article will be made available by the authors on reasonable request.

References

  1. D.A. Quang, L.D. Vuong, J. Sci.: Adv. Mater. Devices 7(2), 100436 (2022)

    CAS  Google Scholar 

  2. L.D. Vuong, J. Mater. Sci.: Mater. Electron. 33(9), 6710–6721 (2022)

    CAS  Google Scholar 

  3. P.D. Gio, L.D. Vuong, V. ThanhTung, J. Electroceram 46(3), 107–114 (2021)

    Article  CAS  Google Scholar 

  4. D.A. Tuan, V.T. Tung, L.D. Vuong, N.H. Yen, L.T.U. Tu, J. Electron. Mater. 47(10), 6297–6301 (2018)

    Article  CAS  Google Scholar 

  5. D. Biswas, P. Sharma, N.S. Panwar, Ferroelectrics 571(1), 214–229 (2021)

    Article  CAS  Google Scholar 

  6. K. Tanaka, K. Kakimoto, H. Ohsato, J. Eur. Ceram. Soc. 27(13–15), 3591–3595 (2007)

    Article  CAS  Google Scholar 

  7. N. Chaiyo, R. Muanghlua, S. Niemcharoen, B. Boonchom, N. Vittayakorn, J. Alloys Compd. 509(5), 2445–2449 (2011)

    Article  CAS  Google Scholar 

  8. F. Yu, P. Wang, J. Lin, P. Zhou, Y. Ma, X. Wu, C. Lin, C. Zhao, M. Gao, Q. Zhang, J. Lumin. 252, 119345 (2022)

    Article  CAS  Google Scholar 

  9. D. Zhang, Z. Zhang, 2015 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM) (2015), pp. 237–239

  10. P.D. Gio, L.D. Vuong, L.T.U. Tu, J. Mater. Sci.: Mater. Electron. 32(10), 13738–13747 (2021)

    CAS  Google Scholar 

  11. J. Chen, W. Wu, S. Su, J. Yu, X. Lei, P. Zhao, J. Wuhan Univ. Technol. Mater. Sci. Ed. 34(1), 30–34 (2019)

    Article  CAS  Google Scholar 

  12. L. Wu, J.L. Zhang, C.L. Wang, J.C. Li, J. Appl. Phys. 103(8), 084116 (2008)

    Article  Google Scholar 

  13. H. Li, Y. Hao, Z. Lin, X. He, J. Cai, X. Gong, Y. Gu, R. Zhang, H. Cheng, B. Zhang, Solid State Commun. 353, 114871 (2022)

    Article  CAS  Google Scholar 

  14. Y. Zhang, H. Li, M. Li, X. Xu, Ferroelectrics 570(1), 31–36 (2021)

    Article  CAS  Google Scholar 

  15. X. Gao, Z. Cheng, Z. Chen, Y. Liu, X. Meng, X. Zhang, J. Wang, Q. Guo, B. Li, H. Sun, Q. Gu, H. Hao, Q. Shen, J. Wu, X. Liao, S.P. Ringer, H. Liu, L. Zhang, W. Chen, F. Li, S. Zhang, Nat. Commun. 12(1), 881 (2021)

    Article  CAS  Google Scholar 

  16. Y. Qin, P. Yan, F. Han, Y. Zhang, Z. Lv, C. Zhou, J. Alloys Compd. 891, 161959 (2022)

    Article  CAS  Google Scholar 

  17. X. Lv, N. Zhang, Y. Ma, X. Zhang, J. Wu, J. Mater. Sci. Technol. 130, 198–207 (2022)

    Article  Google Scholar 

  18. J. Yin, J. Wu, H. Wang, J. Mater. Sci.: Mater. Electron. 28(6), 4828–4838 (2017)

    CAS  Google Scholar 

  19. L.-Q. Cheng, M. Feng, Y. Sun, Z. Zhou, Z. Xu, J. Adv. Ceram. 9(1), 27–34 (2020)

    Article  CAS  Google Scholar 

  20. J. Li, J. Wang, F. Wu, H. Ma, T. Ma, Y. Tian, D. Liu, B. Yang, Coatings 12(4), 526 (2022)

    Article  Google Scholar 

  21. K. Kirana, V. Gangadhar, G. Prasad, Mater. Today 11, 971–979 (2019)

    CAS  Google Scholar 

  22. H.-C. Cho, D.-Y. Lim, J.-H. Song, Crystals 12(6), 827 (2022)

    Article  CAS  Google Scholar 

  23. J.B. Lim, Y.-H. Jeong, M.-H. Kim, D. Suvorov, J.-H. Jeon, Ceram. Int. 38(3), 2605–2608 (2012)

    Article  CAS  Google Scholar 

  24. X. Shang, J. Guo, W. Xiao, Y. Lu, G. Chang, T. Zhou, Y. He, J. Electron. Mater. 43(5), 1424–1431 (2014)

    Article  CAS  Google Scholar 

  25. L.D. Vuong, D.A. Quang, P. Van Quan, N. Truong-Tho, J. Electron. Mater. 49(11), 6465–6473 (2020)

    Article  CAS  Google Scholar 

  26. B. Zhang, J. Wu, X. Wang, X. Cheng, J. Zhu, D. Xiao, Curr. Appl. Phys. 13(8), 1647–1650 (2013)

    Article  Google Scholar 

  27. T. Wang, Y. Liao, D. Wang, Q. Zheng, J. Liao, F. Xie, W. Jie, D. Lin, J. Am. Ceram. Soc. 102(1), 351–361 (2019)

    Article  CAS  Google Scholar 

  28. N. Truong-Tho, L.D. Vuong, J. Adv. Dielectr. 10(04), 2050011 (2020)

    Article  CAS  Google Scholar 

  29. L.D. Vuong, P.D. Gio, J. Alloys Compd. 817, 152790 (2020)

    Article  CAS  Google Scholar 

  30. H. Sun, J. Liu, X. Wang, Q. Zhang, X. Hao, S. An, J. Mater. Chem. C 5(35), 9080–9087 (2017)

    Article  Google Scholar 

  31. N. Truong-Tho, D. Le Vuong, J. Mater. Sci.: Mater. Electron. 32(12), 16601–16611 (2021)

    CAS  Google Scholar 

  32. L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42(9), 438–442 (1959)

    Article  CAS  Google Scholar 

  33. Y. Zhao, Z. Xu, R. Chu, J. Hao, J. Du, G. Li, J. Mater. Sci.: Mater. Electron. 28(2), 1211–1216 (2017)

    CAS  Google Scholar 

  34. Y. Zhai, Y. Feng, J. Du, J. Xue, J. Shen, Y. Lu, T. Lu, P. Fu, W. Li, J. Hao, J. Mater. Sci.: Mater. Electron. 30(5), 4352–4358 (2019)

    CAS  Google Scholar 

  35. C. Shi, J. Ma, J. Wu, K. Chen, B. Wu, J. Mater. Sci.: Mater. Electron. 31(4), 2809–2816 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Ministry of Education and Training under Grant Number B2022-ĐHH-06.

Funding

This research was funded by Ministry of Education and Training under Grant Number B2022-ĐHH-06.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study concept and design including doing experiments as well as discussing writing the manuscript. The manuscript was read and approved by all authors.

Corresponding author

Correspondence to Le Tran Uyen Tu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, L.T.U., Gio, P.D. Systematic study of the influence of the K/Na ratio on the structure, microstructure, and electrical properties of (KxNa1−x)NbO3 lead-free ceramics. J Mater Sci: Mater Electron 34, 217 (2023). https://doi.org/10.1007/s10854-022-09475-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09475-0

Navigation