Skip to main content
Log in

Effect of humidified atmosphere on the physicochemical properties of S-doped La2Mo2O9 oxide-ion conductors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

LAMOX are new materials deriving from La2Mo2O9 extensively studied due to their recently discovered high ionic conductivity (better than best stabilized zirconia above 600 °C). So, applications as fuel cell electrolytes can be predicted. Other applications such as electrode materials and oxidation catalysts are also possible to the control of the molybdenum oxidation states. The lanthanum molybdate La2Mo2O9 is taken as a reference in this paper. The transition from a weakly conducting phase (α-La2Mo2O9, monoclinic, ordered) to the highly conducting phase (β-La2Mo2O9, cubic, disordered) occurs at 580 °C. The aim of this work was to generate protonic and anionic conductors. To prepare the composition of the solid solution La2-2x(Mo, S)2O9-3x·xH2O, a powder solid-state reaction pathway was used as a sulfur source. Pure cubic phase (β -form, the space group P213) was obtained when the S6+ contents had reached 50 mol%. The structure and lattice parameters of La2MoSO9 are obtained from Rietveld refinement. The simultaneous DTA and TGA measurements demonstrate thermal stability. The sintered specimens are annealed at 850 °C to test their electrical properties. The temperature dependence of electrical conductivities for La2Mo2O9 and La2MoSO9 obeyed the Arrhenius law below 580 °C, whereas the Vogel-Tammann-Fulcher (VTF) regime could satisfactorily represent the conduction behaviors beyond 580 °C. The infrared and Raman spectra were performed at ambient temperature. All theoretically predicted vibrations have been observed, sulfate ions environment influences their internal vibration modes. Investigating the vibrational spectra of these two phases (α and β) can help us to acquire more definitive information on the internal vibrations of XO4 (X=Mo, S).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to the reasons of ethics and ownership, but are available from the corresponding author on reasonable request.

References

  1. A.M. Mansour, I.M. El Radaf, T.A. Hameed, G.B. Sakr, Investigation of Ag2HgI4 nanoparticules: thermal phase transition and non-isothermal kinetic study. Bull. Ser. B 81, 134–148 (2019)

    CAS  Google Scholar 

  2. A.M. El Nahrawy, A.B.A. Hammad, A.M. Youssef, A.M. Mansour, A.M. Othman, Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO: Cu nanocomposites. Appl. Phys. A Mater. Sci. Process. 125, 1–9 (2019). https://doi.org/10.1007/S00339-018-2351-5/TABLES/1

    Article  CAS  Google Scholar 

  3. E.M. El-Menyawy, I.T. Zedan, A.M. Mansour, H.H. Nawar, Thermal stability, AC electrical conductivity and dielectric properties of N-(5-{[antipyrinyl-hydrazono]-cyanomethyl}-[1,3,4]thiadiazol-2-yl)-benzamide. J. Alloys Compd. 611, 50–56 (2014). https://doi.org/10.1016/J.JALLCOM.2014.05.120

    Article  CAS  Google Scholar 

  4. A.B. Abou Hammad, A.M. Mansour, A.M. El Nahrawy, Ni2+doping effect on potassium barium titanate nanoparticles: enhancement optical and dielectric properties. Phys. Scr. 96, 125821 (2021). https://doi.org/10.1088/1402-4896/AC25A6

    Article  Google Scholar 

  5. A.M. Mansour, I.M. El Radaf, G.M. Mahmoud, Effect of deposition temperature on structural, optical and electrical properties of chemically deposited thermochromic Cu2HgI4 thin films. Int. J. Microstruct. Mater. Prop. 14, 462–477 (2019). https://doi.org/10.1504/IJMMP.2019.102223

    Article  CAS  Google Scholar 

  6. A.A.M. Farag, A.M. Mansour, A.H. Ammar, M.A. Rafea, A.M. Farid, Electrical conductivity, dielectric properties and optical absorption of organic based nanocrystalline sodium copper chlorophyllin for photodiode application. J. Alloys Compd. 513, 404–413 (2012). https://doi.org/10.1016/J.JALLCOM.2011.10.058

    Article  CAS  Google Scholar 

  7. A.M. El Nahrawy, A.B. Abou Hammad, A.M. Bakr, T.I. Shaheen, A.M. Mansour, Sol–gel synthesis and physical characterization of high impact polystyrene nanocomposites based on Fe2O3 doped with ZnO. Appl. Phys. A Mater. Sci. Process. 126, 1–11 (2020). https://doi.org/10.1007/S00339-020-03822-W/FIGURES/9

    Article  Google Scholar 

  8. T.A. Hameed, F. Mohamed, A.M. Mansour, I.K. Battisha, Synthesis of Sm3+ and Gd3+ ions embedded in nano-structure barium titanate prepared by sol-gel technique: terahertz, dielectric and up-conversion study. ECS J. Solid State Sci. Technol. 9, 123005 (2020). https://doi.org/10.1149/2162-8777/ABC96B

    Article  CAS  Google Scholar 

  9. A.M. El Nahrawy, A.I. Ali, A.M. Mansour, A.B. Abou Hammad, B.A. Hemdan, S. Kamel, Talented Bi0.5Na0.25K0.25TiO3/oxidized cellulose films for optoelectronic and bioburden of pathogenic microbes. Carbohydr. Polym. 291, 119656 (2022). https://doi.org/10.1016/J.CARBPOL.2022.119656

    Article  Google Scholar 

  10. R.S. Ibrahim, A.A. Azab, A.M. Mansour, Synthesis and structural, optical, and magnetic properties of Mn-doped CdS quantum dots prepared by chemical precipitation method. J. Mater. Sci. Mater. Electron. 32, 19980–19990 (2021). https://doi.org/10.1007/S10854-021-06522-0/FIGURES/11

    Article  CAS  Google Scholar 

  11. A.M. Mansour, F.M.A. El-Taweel, R.A.N. Abu El-Enein, E.M. El-Menyawy, Structural, Optical, Electrical and Photoelectrical Properties of 2-Amino-4-(5-bromothiophen-2-yl)-56-dihydro-6-methyl-5-oxo-4H-pyrano[3,2-c] quinoline-3-carbonitrile Films. J. Electron. Mater. 46(12), 6957–6964 (2017). https://doi.org/10.1007/S11664-017-5739-7

    Article  CAS  Google Scholar 

  12. I.T. Zedan, E.M. El-Menyawy, A.M. Mansour, Physical characterizations of 3-(4-Methyl Piperazinylimino Methyl) rifampicin films for photodiode applications. SILICON 113(11), 1693–1699 (2018). https://doi.org/10.1007/S12633-018-9989-7

    Article  Google Scholar 

  13. F. Goutenoire, O. Isnard, R. Retoux, P. Lacorre, Crystal structure of La2Mo2O9, a new fast oxide-ion conductor. Chem. Mater. 12, 2575–2580 (2000). https://doi.org/10.1021/CM991199L/ASSET/IMAGES/LARGE/CM991199LF00008.JPEG

    Article  CAS  Google Scholar 

  14. I.R. Evans, J.A.K. Howard, J.S.O. Evans, The crystal structure of α-La2Mo2O9 and the structural origin of the oxide ion migration pathway. Chem. Mater. (2005). https://doi.org/10.1021/CM050049

    Article  Google Scholar 

  15. F. Goutenoire, O. Isnard, E. Suard, O. Bohnke, Structural and transport characteristics of the LAMOX family of fast oxide-ion conductors, based on lanthanum molybdenum oxide La2Mo2O9 basis of a Pubs.Rsc.Org. J. Mater. Chem. 11, 119–124 (2001). https://doi.org/10.1039/B002962I

    Article  CAS  Google Scholar 

  16. P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Lallgant, Designing fast oxide-ion conductors based on La2Mo2O9. Nature 404, 856–858 (2000). https://doi.org/10.1038/35009069

    Article  CAS  Google Scholar 

  17. S. Georges, F. Goutenoire, O.Bohnke for E., undefined 2004, The LAMOX family of fast oxide-ion conductors: overview and recent results, Academia.Edu. (2022). https://www.academia.edu/download/42653329/The_LAMOX_Family_of_Fast_OxideIon_Conduc_20160213_4521_11e6n6i.pdf. (Accessed 4th Oct, 2022).

  18. X.P. Wang, Q.F. Fang, Z.S. Li, G.G. Zhang, Z.G. Yi, Dielectric relaxation studies of Bi-doping effects on the oxygen-ion diffusion in La2−xBixMo2O9 oxide-ion conductors. Appl. Phys. Lett. 81, 3434 (2002). https://doi.org/10.1063/1.1518151

    Article  CAS  Google Scholar 

  19. A. Subramania, T. Saradha, S. Muzhumathi, Synthesis, sinterability and ionic conductivity of nanocrystalline Pr-doped La2Mo2O9 fast oxide-ion conductors. J. Power Sources. 167, 319–324 (2007). https://doi.org/10.1016/J.JPOWSOUR.2007.01.094

    Article  CAS  Google Scholar 

  20. S. Georges, F. Goutenoire, F. Altorfer, D. Sheptyakov, F. Fauth, E. Suard, P. Lacorre, Thermal, structural and transport properties of the fast oxide-ion conductors La2−xRxMo2O9 (R=Nd, Gd, Y). Solid State Ionics 161, 231–241 (2003). https://doi.org/10.1016/S0167-2738(03)00279-0

    Article  CAS  Google Scholar 

  21. D. Marrero-López, P. Núñez, M. Abril, V. Lavín, U.R. Rodríguez-Mendoza, V.D. Rodríguez, Synthesis, electrical properties, and optical characterization of Eu3+ doped La2Mo2O9 nanocrystalline phosphors. J. Non. Cryst. Solids. 345–346, 377–381 (2004). https://doi.org/10.1016/J.JNONCRYSOL.2004.08.047

    Article  Google Scholar 

  22. C. Tealdi, G. Chiodelli, L. Malavasi, G. Flor, Effect of alkaline-doping on the properties of La2Mo2O9 fast oxygen ion conductor. J. Mater. Chem (2004). https://doi.org/10.1039/b410437d

    Article  Google Scholar 

  23. X.P. Wang, Z.J. Cheng, Q.F. Fang, Influence of potassium doping on the oxygen-ion diffusion and ionic conduction in the La2Mo2O9 oxide-ion conductors. Solid State Ionics 176, 761–765 (2005). https://doi.org/10.1016/J.SSI.2004.10.015

    Article  CAS  Google Scholar 

  24. D. Marrero-López, D. Pérez-Coll, J.C. Ruiz-Morales, J. Canales-Vázquez, M.C. Martín-Sedeño, P. Núñez, Synthesis and transport properties in La2−xAxMo2O9−δ (A = Ca2+, Sr2+, Ba2+, K+) series. Electrochim. Acta. 52, 5219–5231 (2007). https://doi.org/10.1016/J.ELECTACTA.2007.02.033

    Article  Google Scholar 

  25. G. Corbel, Y. Laligant, F. Goutenoire, E. Suard, P. Lacorre, Effects of partial substitution of Mo6+ by Cr6+ and W6+ on the crystal structure of the fast oxide-ion conductor structural effects of W6+. Chem. Mater. 17, 4678–4684 (2005). https://doi.org/10.1021/CM0501214/SUPPL_FILE/CM0501214SI20050119_114305.CIF

    Article  CAS  Google Scholar 

  26. J.A. Collado, M.A.G. Aranda, A. Cabeza, P. Olivera-Pastor, S. Bruque, Synthesis, Structures, and thermal expansion of the La2W2−xMoxO9 series. J. Solid State Chem. 167, 80–85 (2002). https://doi.org/10.1006/JSSC.2002.9622

    Article  CAS  Google Scholar 

  27. N. Mhadhbi, G. Corbel, P. Lacorre, A. Bulou, Partial substitution of Mo6+ by S6+ in the fast oxide ion conductor La2Mo2O9: Synthesis, structure and sulfur depletion. J. Solid State Chem. 190, 246–256 (2012). https://doi.org/10.1016/J.JSSC.2012.02.043

    Article  CAS  Google Scholar 

  28. V.I. Voronkova, E.P. Kharitonova, A.E. KrasilNikova, Specific features of phase transitions and the conduction of La2Mo2O9 oxide-ion conducting compound doped with vanadium. Crystallogr. Rep. 55(2), 276–282 (2010). https://doi.org/10.1134/S1063774510020203

    Article  CAS  Google Scholar 

  29. S. Basu, P.S. Devi, H.S. Maiti, Nb-Doped La2Mo2O9: a new material with high ionic conductivity. J. Electrochem. Soc. 152, A2143 (2005). https://doi.org/10.1149/1.2047507

    Article  Google Scholar 

  30. Z.S. Khadasheva, N.U. Venskovskii, M.G. Safronenko, A.V. Mosunov, E.D. Politova, S.Y. Stefanovich, Synthesis and properties of La2(Mo1–x Mx)2O9 (M = Nb, Ta) ionic conductors. Inorg. Mater. 38, 1168–1171 (2002). https://doi.org/10.1023/A:1020978902757

    Article  CAS  Google Scholar 

  31. R.D. Bayliss, S.N. Cook, S. Kotsantonis, R.J. Chater, J.A. Kilner, Oxygen ion diffusion and surface exchange properties of the α- and δ-phases of Bi2O3. Adv. Energy Mater. 4, 1301575 (2014). https://doi.org/10.1002/AENM.201301575

    Article  Google Scholar 

  32. J.A. Kilner, M. Burriel, Mater. Intermed. Temp. Solid-Oxide Fuel Cells 44, 365–393 (2014). https://doi.org/10.1146/ANNUREV-MATSCI-070813-113426

    Article  CAS  Google Scholar 

  33. L. Malavasi, C.A.J. Fisher, M.S. Islam, Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem. Soc. Rev. 39, 4370–4387 (2010). https://doi.org/10.1039/B915141A

    Article  CAS  Google Scholar 

  34. A. Tarancón, Strategies for lowering solid oxide fuel cells operating temperature. Energies 2, 1130–1150 (2009). https://doi.org/10.3390/EN20401130

    Article  Google Scholar 

  35. M. Guzik, M. Bieza, E. Tomaszewicz, Y. Guyot, E. Zych, G. Boulon, Nd3+ dopant influence on the structural and spectroscopic properties of microcrystalline La2Mo2O9 molybdate. Opt. Mater. (Amst) 41, 21–31 (2015). https://doi.org/10.1016/J.OPTMAT.2014.11.013

    Article  CAS  Google Scholar 

  36. T. Matsumoto, K. Sunada, T. Nagai, T. Isobe, S. Matsushita, H. Ishiguro, A. Nakajima, Preparation of hydrophobic La2Mo2O9 ceramics with antibacterial and antiviral properties. J. Hazard. Mater. (2019). https://doi.org/10.1016/j.jhazmat.2019.05.003

    Article  Google Scholar 

  37. S. Hussain, X. Yang, M.K. Aslam, A. Shaheen, M.S. Javed, N. Aslam, B. Aslam, G. Liu, G. Qiao, R. TiN, Nanoparticles polysulfide anchor for Li–S storage and diffusion pathways using first principle calculations. Chem. Eng. J. 391, 123595 (2020). https://doi.org/10.1016/J.CEJ.2019.123595

    Article  CAS  Google Scholar 

  38. T. Shi, H. Hou, S. Hussain, C. Ge, M.A. Alsaiari, A.S. Alkorbi, G. Liu, R. Alsaiari, G. Qiao, Efficient detection of hazardous H2S gas using multifaceted Co3O4/ZnO hollow nanostructures. Chemosphere 287, 132178 (2022). https://doi.org/10.1016/J.CHEMOSPHERE.2021.132178

    Article  CAS  Google Scholar 

  39. A.S. Alkorbi, H.M.A. Javed, S. Hussain, S. Latif, M.S. Mahr, M.S. Mustafa, R. Alsaiari, N.A. Alhemiary, Solar light driven photocatalytic degradation of methyl blue by carbon-doped TiO2 nanoparticles. Opt. Mater. 127, 112259 (2022). https://doi.org/10.1016/J.OPTMAT.2022.112259

    Article  CAS  Google Scholar 

  40. M. Zhan, C. Ge, S. Hussain, A.S. Alkorbi, R. Alsaiari, N.A. Alhemiary, G. Qiao, G. Liu, Enhanced NO2 gas-sensing performance by core-shell SnO2/ZIF-8 nanospheres. Chemosphere 291, 132842 (2022). https://doi.org/10.1016/J.CHEMOSPHERE.2021.132842

    Article  CAS  Google Scholar 

  41. S. Hussain, M.S. Javed, S. Asim, A. Shaheen, A.J. Khan, Y. Abbas, N. Ullah, A. Iqbal, M. Wang, G. Qiao, S. Yun, Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram. Int. 46, 6406–6412 (2020). https://doi.org/10.1016/J.CERAMINT.2019.11.118

    Article  CAS  Google Scholar 

  42. S. Hussain, N. Farooq, A.S. Alkorbi, R. Alsaiari, N.A. Alhemiary, M. Wang, G. Qiao, Polyhedral Co3O4@ZnO nanostructures as proficient photocatalysts for vitiation of organic dyes from waste water. J. Mol. Liq. 362, 119765 (2022). https://doi.org/10.1016/J.MOLLIQ.2022.119765

    Article  CAS  Google Scholar 

  43. J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 192, 55–69 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  44. M.W. Nathans, W.W. Wendlandt, The thermal decomposition of the rare-earth sulphates: thermogravimetric and differential thermal analysis studies up to 1400°C. J. Inorg. Nucl. Chem. 24, 869–879 (1962). https://doi.org/10.1016/0022-1902(62)80108-0

    Article  Google Scholar 

  45. T.Y. Jin, M.V. Madhava Rao, C.L. Cheng, D.S. Tsai, M.H. Hung, Structural stability and ion conductivity of the Dy and W substituted La2Mo2O9. Solid State Ionics 178, 367–374 (2007). https://doi.org/10.1016/j.ssi.2007.01.031

    Article  CAS  Google Scholar 

  46. L. Ge, K. Guo, L. Guo, Sinterability, reducibility, and electrical conductivity of fast oxide-ion conductors La1.8R0.2MoWO9 (R = Pr, Nd, Gd and Y). Ceram Int 41, 10208–11021 (2015). https://doi.org/10.1016/j.ceramint.2015.04.127

    Article  CAS  Google Scholar 

  47. J.P. Fournier, J. Fournier, R. Kohlmuller, Bull- Google Scholar, (2022). https://scholar.google.fr/scholar?hl=en&as_sdt=0%2C5&q=J.P.+Fournier%2C+J.+Fournier%2C+R.+Kohlmuller%2C+Bull.+Soc.+J.+Chim.+Fr.+12+%281970%29+4277.&btnG (Accessed 4th Oct, 2022).

  48. I.R. Evans, J.A.K. Howard, J.S.O. Evans, The Crystal Structure of Alpha-La2Mo2O9 and the Structural Origin of the Oxide Ion Migration Pathway. Chem. Mater. 17(16), 4074–4077 (2005). https://doi.org/10.1021/CM050049.

    Article  CAS  Google Scholar 

  49. P. Lacorre, A. Selmi, G. Corbel, B. Boulard, On the flexibility of the structural framework of cubic LAMOX compounds, in relationship with their anionic conduction properties. Inorg. Chem. 45, 627–635 (2006). https://doi.org/10.1021/IC0513080

    Article  CAS  Google Scholar 

  50. C. Tealdi, L. Malavasi, C. Ritter, G. Flor, G. Costa, Lattice effects in cubic La2Mo2O9: effect of vacuum and correlation with transport properties. J. Solid State Chem. 181, 603–610 (2008). https://doi.org/10.1016/J.JSSC.2008.01.001

    Article  CAS  Google Scholar 

  51. G. Corbel, E. Suard, P. Lacorre, Structural key of the thermal expansion and the oxide ionic conduction in derivatives of La2Mo2O9: A temperature- controlled neutron diffraction study of β-La1.7Bi0.3Mo2O9. Chem. Mater. 23, 1288–1298 (2011). https://doi.org/10.1021/CM103255R/SUPPL_FILE/CM103255R_SI_002.CIF

    Article  CAS  Google Scholar 

  52. T. Paul, A. Ghosh, Conduction and relaxation mechanisms in bismuth doped La2Mo2O9 ionic conductors. J. Appl. Phys. 114, 164101 (2013). https://doi.org/10.1063/1.4826077

    Article  CAS  Google Scholar 

  53. S.J. Skinner, H.-D.W. Cheminform, The LAMOX family of fast oxide-ion conductors: overview and recent results. J. New Mater. Electrochem. Syst. 7, 51–57 (2004)

    Google Scholar 

  54. F. Goutenoire, O. Isnard, E. Suard, O. Bohnke, Y. Laligant, R. Retoux, Ph. Lacorre, Structural and transport characteristics of the LAMOX family of fast oxide- ion conductors, based on lanthanum molybdenum oxide La2Mo2O9. J. Mater. Chem. 11, 119–124 (2001). https://doi.org/10.1039/B002962I

    Article  CAS  Google Scholar 

  55. B. Deb, A. Ghosh, Structure and dielectric constant of silver molybdophosphate mixed network former glasses. J. Alloys Compd. 509, 8251–8255 (2011). https://doi.org/10.1016/J.JALLCOM.2011.05.098

    Article  CAS  Google Scholar 

  56. S.M. Abo-Naf, FTIR and UV–VIS optical absorption spectra of gamma-irradiated MoO3-doped lead borate glasses. J. Non. Cryst. Solids. 358, 406–413 (2012). https://doi.org/10.1016/J.JNONCRYSOL.2011.10.013

    Article  CAS  Google Scholar 

  57. G. Corbel, P. Durand, P. Lacorre, Comprehensive survey of Nd3+ substitution In La2Mo2O9 oxide-ion conductor. J. Solid State Chem. 182, 1009–1016 (2009). https://doi.org/10.1016/J.JSSC.2009.01.016

    Article  CAS  Google Scholar 

  58. M. Guzik, J. Cybińska, E. Tomaszewicz, Y. Guyot, J. Legendziewicz, G. Boulon, W. Strk, Spectroscopic behavior of Nd3+ in a new microcrystalline ZnY4W3O16 tungstate. Opt. Mater. (Amst) 34, 487–495 (2011). https://doi.org/10.1016/J.OPTMAT.2011.07.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this work through Research Partnership Program no RP-21-09-71.

Funding

Imam Mohammed Ibn Saud Islamic University, RP-21-09-71, Naoufel Ben Hamadi

Author information

Authors and Affiliations

Authors

Contributions

WJ contributed to formal analysis and writing–original draft; NM contributed to writing, investigation, and methodology; NBH contributed to investigation and software; AG contributed to conceptualization and validation; TS contributed to formal analysis and writing; HN contributed to methodology, validation, writing–review & editing, and supervision.

Corresponding author

Correspondence to Houcine Naïli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest among themselves.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabeur, W., Mhadhbi, N., Hamadi, N.B. et al. Effect of humidified atmosphere on the physicochemical properties of S-doped La2Mo2O9 oxide-ion conductors. J Mater Sci: Mater Electron 34, 27 (2023). https://doi.org/10.1007/s10854-022-09461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09461-6

Navigation