Skip to main content
Log in

Low-temperature sintering of ZnO:Al ceramics by means of chemical vapor transport

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new technological approach for sintering Al-doped ZnO ceramics using chemical vapor transport (CVT) based on HCl has been developed. Among the advantages of the proposed sintering approach are: the low sintering temperature of 1070 °C; the absence of deviation in the diameter of ceramics after sintering; and the presence of Zn excess in the resulting material. The influence of dopant powder, concentration of Al, powder compacting pressure, and stoichiometric deviation on the density and conductive properties of ceramics has been investigated. Due to the relatively weak interaction of Al2O3 with HCl and limited solubility of Al in ZnO, a doping level about 2 at.% is recommended. A further increase in the dopant concentration significantly reduces the density and conductivity of the resulting material. A theoretical and experimental comparative analysis of the features of CVT sintering of ZnO doped with Al, Ga, and In was also carried out. ZnO:Al:Cl CVT ceramics with the resistivity of 9.5 × 10–3 Ω cm can be used as stable magnetron targets for ZnO thin films deposition with improved conductive properties. The influence of dopant powder, Al concentration, deposition temperature, and the gaseous medium of sintering target on the electrical properties of films are investigated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

This manuscript has no associated data.

References

  1. K. Ellmer, A. Klein, B. Rech. Transparent Conductive Zinc Oxide (Springer-Verlag, Berlin Heidelberg, 2008)

    Book  Google Scholar 

  2. J.H. Scofieid, J. Gaumer, D.N. Sethna, C.V. Kelly, M. Hickner, J. Wingert, M.H.-C. Jin, J.E. Dickman, A. F. Hepp. Transparent conducting ZnO films by reactive dc magnetron sputtering from metallic targets. Proceeding of 19th European photovoltaic solar energy conference, June 2004, Paris, France

  3. J. Liu, W. Zhang, D. Song, Q. Ma, L. Zhang, H. Zhang, X. Ma, H. Song, Comparative study of the sintering process and thin film sputtering of AZO, GZO and AGZO ceramics targets. Ceram. Int. 40, 12905 (2014)

    Article  CAS  Google Scholar 

  4. Yu.-H. Chou, J.L.H. Chau, W.L. Wang, C.S. Chen, S.H. Wang, C.C. Yang, Preparation and characterization of solid-state sintered aluminum-doped zinc oxide with different alumina contents. Bull. Mater. Sci. 34, 477 (2011)

    Article  CAS  Google Scholar 

  5. J.-W. Lee, C. Jin, S.-J. Hong, S.-K. Hyun, Microstructure and density of sintered ZnO ceramics prepared by magnetic pulsed compaction. Adv. Mater. Sci. Eng. 2018, 2514567 (2018)

    Article  Google Scholar 

  6. N. Boonyopakorn, R. Rangkupan, T. Osotchan, Preparation of aluminum doped zinc oxide targets and RF magnetron sputter thin films with various aluminum doping concentrations. Songklanakarin J. Sci. Technol. 40, 824 (2018)

    CAS  Google Scholar 

  7. F.-K. Chen, D.-C. Tsai, Z.-C. Chang, E.-C. Chen, F.-S. Shieu. Influence of Al content and annealing atmosphere on optoelectronic characteristics of Al:ZnO thin films. Appl. Phys. A 126, 743 (2020)

    Article  CAS  Google Scholar 

  8. G.V. Colibaba, Halide-carbon vapor transport of ZnO and its application perspectives for doping with multivalent metals. J. Solid State Chem. 266, 166 (2018)

    Article  CAS  Google Scholar 

  9. G.V. Colibaba, Sintering highly conductive ZnO:HCl ceramics by means of chemical vapor transport reactions. Ceram. Int. 45, 15843 (2019)

    Article  CAS  Google Scholar 

  10. G.V. Colibaba, D. Rusnac, V. Fedorov, P. Petrenko, E.V. Monaico, Low-temperature sintering of highly conductive ZnO:Ga:Cl ceramics by means of chemical vapor transport. J. Eur. Ceram. Soc. 41, 443 (2021)

    Article  CAS  Google Scholar 

  11. F.-H. Wang, C. Chiao-Lu, Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by RF magnetron sputtering. Appl. Surf. Sci. 370, 83 (2016)

    Article  CAS  Google Scholar 

  12. R. Ramos, M. Chaves, E. Martins, S.F. Durrant, E.C. Rangel, T.F. da Silva, J.R.R. Bortoleto, Growth evolution of AZO thin films deposited by magnetron sputtering at room temperature. Mater. Res. 24,e20210052 (2021)

  13. A. Kh, A. Abduev, A.K. Sh. Asvarov, R.M. Akhmedov, V.V. Emirov, Belyaev, UV-assisted growth of transparent conducting layers based on zinc oxide. Tech. Phys. Lett. 43, 1016 (2017)

    Article  Google Scholar 

  14. C.A. Gupta, S. Mangal, U.P. Singh, Impact of rapid thermal annealing on structural, optical and electrical properties of DC sputtered doped and co-doped ZnO thin film. Appl. Surf. Sci. 288, 411 (2014)

    Article  CAS  Google Scholar 

  15. M. Miyazaki, K. Sato, A. Mitsui, H. Nishimura. Properties of Ga-doped ZnO films. J. Non-cryst. Solids 218, 323 (1997)

    Article  CAS  Google Scholar 

  16. J. Nomoto, H. Makino, T. Nakajima, T. Tsuchiya, T. Yamamoto, Improvement of the properties of direct-current magnetron-sputtered Al-doped ZnO polycrystalline films containing retained Ar atoms using 10-nm-thick buffer layers. ACS Omega 4, 14526 (2019)

    Article  CAS  Google Scholar 

  17. A. Kh, A.K. Abduev, A. Akhmedov, Sh, Asvarov. Transparent conducting ZnO-based thin films deposited by magnetron sputtering of a ZnO:Ga-C composite targets. Tech. Phys. Lett. 40, 618 (2014)

    Article  Google Scholar 

  18. F.-H. Wang, C.-F. Yang, J.-C. Liou, I.-C. Chen, Effects of hydrogen on the optical and electrical characteristics of the sputter-deposited Al2O3-doped ZnO thin films. J. Nanomaterials 2014, 857614 (2014)

    Article  Google Scholar 

  19. B. Han, J. Song, J. Li, Y. Guo, B. Dai, X. Meng, W. Song, F. Yang, Y. Wang, Fabrication of chemically stable hydrogen- and niobium-codoped ZnO transparent conductive films. RSC Adv. 9, 12681 (2019)

    Article  CAS  Google Scholar 

  20. Q. Shi, K. Zhou, M. Dai, S. Lin, H. Hou, C. Wei, F. Hu, Growth of high-quality Ga-F codoped ZnO thin films by mid-frequency sputtering. Ceram. Inter 40, 211 (2014)

    Article  CAS  Google Scholar 

  21. G.V. Colibaba, D. Rusnac, V. Fedorov, E.I. Monaico, Effect of chlorine on the conductivity of ZnO:Ga thin films. J. Mater. Sci.: Mater. Electron 32, 18291 (2021)

    CAS  Google Scholar 

  22. G.V. Colibaba, ZnO:HCl single crystals: thermodynamic analysis of CVT system, feature of growth and characterization. Solid State Sci. 56, 1 (2016)

    Article  CAS  Google Scholar 

  23. G.V. Colibaba, ZnO doping efficiency by multivalent metals in complex CVT reactions. Solid State Sci. 97, 105944 (2019)

    Article  CAS  Google Scholar 

  24. V.P. Glushko, Thermodynamic Properties of Individual Substances (Nauka Publishing House, Moscow, 1978)

    Google Scholar 

  25. R.A. Lidin, Constants of Inorganic Substances (Drofa Publishing House, Moscow, 2008)

    Google Scholar 

  26. G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086 (1976)

    Article  CAS  Google Scholar 

  27. G.V. Colibaba, A. Avdonin, I. Shtepliuk, M. Caraman, J. Domagała, I. Inculet, Effects of impurity band in heavily doped ZnO:HCl. Phys. B: Condenced matter 553, 174 (2019)

    Article  CAS  Google Scholar 

  28. T. Potlog, D. Rusnac, G. Colibaba, L. Ghimpu, M. Dobromir, D. Luca, Modification of nanosized Ga-doped ZnO/ITO bilayer films by annealing in various environments. A possible route for enhanced UV photodetectors. SSSR preprint (2022). https://doi.org/10.2139/ssrn.4051532

    Article  Google Scholar 

  29. A.Kh Abduev, A.K. Akhmedov, A.Sh. Asvarov, A.A. Abdullaev, S.N. Sulyanov, Effect of growth temperature on properties of transparent conducting gallium-doped ZnO films. Semiconductors 44, 32 (2010)

    Article  CAS  Google Scholar 

  30. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, Morkoç. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  31. Y. Zhang, X. Xu, Machine learning optical band gaps of doped-ZnO films. Optik 217, 164808 (2020)

    Article  CAS  Google Scholar 

  32. T.S. Moss, The interpretation of the properties of indium antimonide. Proc. Phys. Soc. B 67, 775 (1954)

    Article  Google Scholar 

  33. R.J. Hong, X. Jiang, G. Heibe, B. Szyszka, V. Sittinger, W. Werner, Growth behaviours and properties of the ZnO:Al films prepared by reactive mid-frequency magnetron sputtering. J Cryst. Growth 249, 461 (2003)

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by National Agency for Research and Development of Moldova under the project No. 20.80009.5007.16 (Photosensitizers for applications in pharmaceutical medicine and photovoltaics).

Author information

Authors and Affiliations

Authors

Contributions

Contribution of GVC is thermodynamic calculations, ceramic sintering, thin film deposition, theoretical and experimental analysis, and manuscript preparation; DR, NC and OS investigated optical/electrical properties, XRD, and ceramic hardness, respectively; contribution of EVM is SEM and EDX measurements.

Corresponding author

Correspondence to G. V. Colibaba.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colibaba, G.V., Rusnac, D., Costriucova, N. et al. Low-temperature sintering of ZnO:Al ceramics by means of chemical vapor transport. J Mater Sci: Mater Electron 34, 82 (2023). https://doi.org/10.1007/s10854-022-09458-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09458-1

Navigation