Skip to main content
Log in

Simultaneous determination of uric acid, xanthine, and caffeine in human urine samples using nickel ferrite/reduced graphene oxide modified electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work describes the synthesis of nickel ferrite/reduced graphene oxide (FN/rGO) and the simultaneous determination of uric acid (UA), xanthine (XT), and caffeine (CF) by using the resultant FN/rGO-modified electrode. The material was characterized by means of X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray microscopy (mapping energy-dispersive X-Ray), adsorption/desorption isotherms of nitrogen, vibrating sample magnetometry, and Raman spectroscopy. The obtained composite with a large surface area comprises reduced-graphene-oxide layers and highly dispersed nickel-ferrite nanoparticles. This composite possesses significant magnetization saturation with a soft magnetic property. The electrocatalytic activity of FN/rGO was studied toward the oxidation of one important purine, UA, and two oxypurines, XT and CF. The electrode successfully separates the voltammetric signals of the three analytes in a trinary mixture and is employed for their simultaneous determination. The peak current varies linearly with the increase of UA, XT, and CF concentration in a range of 4.0–21.5 µM with detection limits of 1.3, 1.6, and 1.4 µM for UA, XT, and CF, respectively. The practical application of the modified electrode was demonstrated by simultaneously determining the concentrations of UA, XT, and CF in urine samples with expectable recoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. I. Biaggioni, S. Paul, A. Puckett, C. Arzubiaga, J. Pharmacol. Exp. Ther. 258, 588 (1991)

    CAS  Google Scholar 

  2. R.J. Batchelder, R.J. Calder, C.P. Thomas, C.M. Heard, Int. J. Pharm. 283, 45 (2004)

    Article  CAS  Google Scholar 

  3. N.V. Bhagavan, Medical Biochemistry, 4th edn. (Academic Press, USA, 2001)

    Google Scholar 

  4. J.S.N. Dutt, M.F. Cardosi, J. Davis, Analyst 128, 811 (2003)

    Article  CAS  Google Scholar 

  5. V.K. Sharma, F. Jelen, L. Trnkova, Sensors (Switzerland) 15, 1564 (2015)

    Article  CAS  Google Scholar 

  6. S.P. Gaytan, R. Pasaro, Exp. Neurol. 237, 247 (2012)

    Article  CAS  Google Scholar 

  7. Z.Y. Wu, H. Zhang, F. Li, F.Q. Yang, Electrophoresis 41, 1326 (2020)

    Article  CAS  Google Scholar 

  8. M. Shanmuganathan, Z. Kroezen, B. Gill, S. Azab, R.J. de Souza, K.K. Teo, S. Atkinson, P. Subbarao, D. Desai, S.S. Anand, P. Britz-McKibbin, Nat. Protoc. 16, 1966 (2021)

    Article  CAS  Google Scholar 

  9. M. Wu, W. Zhang, X. Shen, W. Wang, Foods 10, 2814 (2021)

    Article  CAS  Google Scholar 

  10. A. Pleskacova, S. Brejcha, L. Pacal, K. Kankova, J. Tomandl, Chromatographia 80, 529 (2017)

    Article  CAS  Google Scholar 

  11. M. Ganesan, K.D. Ramadhass, H.C. Chuang, G. Gopalakrishnan, J. Mol. Liq. 331, 115768 (2021)

    Article  CAS  Google Scholar 

  12. N. Lavanya, C. Sekar, R. Murugan, G. Ravi, Mater. Sci. Eng. C 65, 278 (2016)

    Article  CAS  Google Scholar 

  13. R. Ojani, A. Alinezhad, Z. Abedi, Sensors actuators. B Chem. 188, 621 (2013)

    CAS  Google Scholar 

  14. U. Rajaji, S. Chinnapaiyan, S.M. Chen, G. Mani, A.A. Alothman, R.A. Alshgari, J. Hazard. Mater. 413, 125265 (2021)

    Article  CAS  Google Scholar 

  15. Y. Liu, X. Dong, P. Chen, Chem. Soc. Rev. 41, 2283 (2012)

    Article  CAS  Google Scholar 

  16. M.S. Javed, C. Zhang, L. Chen, Y. Xi, C. Hu, J. Mater. Chem. A 4, 8851 (2016)

    Article  CAS  Google Scholar 

  17. S.I.H. Taqvi, A.R. Solangi, J.A. Buledi, N.H. Khand, B. Junejo, A.F. Memon, S. Ameen, A. Bhatti, P.-L. Show, Y. Vasseghian, H. Karimi-Maleh, Chemosphere 294, 133760 (2022)

    Article  CAS  Google Scholar 

  18. X. Gu, W. Zhu, C. Jia, R. Zhao, W. Schmidt, Y. Wang, Chem. Commun. 47, 5337 (2011)

    Article  CAS  Google Scholar 

  19. M. George, A. Mary John, S. S. Nair, P. A. Joy, and M. R. Anantharaman, J. Magn. Magn. Mater. 302, 190 (2006).

  20. B. Zhao, P. Liu, Y. Jiang, D. Pan, H. Tao, J. Song, T. Fang, W. Xu, J. Pow. Sour. 198, 423 (2012)

    Article  CAS  Google Scholar 

  21. T.K. Aparna, R. Sivasubramanian, Mater. Today Proc. 5, 16111 (2018)

    Article  CAS  Google Scholar 

  22. M. Nouri, M. Rahimnejad, G. Najafpour, A.A. Moghadamnia, Microchim. Acta 187, 1 (2020)

    Article  Google Scholar 

  23. M.H. Mahnashi, Microchim. Acta. 187, 1 (2020)

    Article  Google Scholar 

  24. L. Zhang, T. Wang, X. Fan, D. Deng, Y. Li, X. Yan, L. Luo, Int. J. Electrochem. Sci. 16, 1 (2021)

    Google Scholar 

  25. M.A. Raj, S.A. John, Anal. Chim. Acta 771, 14 (2013)

    Article  CAS  Google Scholar 

  26. S. Jesny, K. Girish Kumar, Electroanalysis 29, 1828 (2017)

    Article  CAS  Google Scholar 

  27. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)

    Article  CAS  Google Scholar 

  28. T.A. Saleh, in Plast. Des. Libr., ed. by T.A. Saleh (William Andrew Publishing, 2021), pp. 213–240

  29. Y. Shi, J. Ding, Z.X. Shen, W.X. Sun, L. Wang, Solid State Commun. 115, 237 (2000)

    Article  CAS  Google Scholar 

  30. J. Kreisel, G. Lucazeau, H. Vincent, J. Solid State Chem. 137, 127 (1998)

    Article  CAS  Google Scholar 

  31. A. Ahlawat, V.G. Sathe, J. Raman Spectrosc. 42, 1087 (2011)

    Article  CAS  Google Scholar 

  32. S. Das, P. Sudhagar, Y. S. Kang, W. Choi, in Carbon Nanomaterials for Advanced Energy Systems, ed. By W. Lu, J.-B. Baek, and L. Dai (Wiley Online Library, 2015), pp. 85–131

  33. H. Zhang, P. Xu, G. Du, Z. Chen, K. Oh, D. Pan, Z. Jiao, Nano Res. 4, 274 (2011)

    Article  Google Scholar 

  34. Y. Gao, D. Ma, C. Wang, J. Guan, X. Bao, Chem. Commun. 47, 2432 (2011)

    Article  CAS  Google Scholar 

  35. P. Khorshidi, R.H.S.M. Shirazi, M. Miralinaghi, E. Moniri, S. Saadi, Res. Chem. Intermed. 46, 3607 (2020)

    Article  CAS  Google Scholar 

  36. R.A. Rochman, S. Wahyuningsih, A.H. Ramelan, Q.A. Hanif, in IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2019), p. 12119

  37. M. Salavati-Niasari, F. Davar, T. Mahmoudi, Polyhedron 28, 1455 (2009)

    Article  CAS  Google Scholar 

  38. M. Mouallem-Bahout, S. Bertrand, O. Peña, J. Solid State Chem. 178, 1080 (2005)

    Article  CAS  Google Scholar 

  39. R. Sankaranarayanan, S. Shailajha, M.S.K. Mubina, C.P. Anilkumar, J. Supercond. Nov. Magn. 33, 3631 (2020)

    Article  CAS  Google Scholar 

  40. I. Chakraborty, D. Mitra, S.P. Moulik, J. Nanoparticle Res. 7, 227 (2005)

    Article  CAS  Google Scholar 

  41. Y. Xia, Z. He, J. Su, B. Tang, K. Hu, Y. Lu, S. Sun, X. Li, RSC Adv. 8, 4284 (2018)

    Article  CAS  Google Scholar 

  42. C. Singh, A. Goyal, S. Singhal, Nanoscale 6, 7959 (2014)

    Article  CAS  Google Scholar 

  43. M. Singh, M. Goyal, K. Devlal, J. Taibah Univ. Sci. 12, 470 (2018)

    Article  Google Scholar 

  44. B.J. Abdullah, Mater. Sci. Semicond. Process. 137, 106214 (2022)

    Article  CAS  Google Scholar 

  45. F. Deng, X. Pei, Y. Luo, X. Luo, D.D. Dionysiou, S. Wu, S. Luo, Catalysts 6, 113 (2016)

    Article  Google Scholar 

  46. L. Wei, Y. Mao, Int. J. Hydrogen Energy 41, 11692 (2016)

    Article  CAS  Google Scholar 

  47. S. Maensiri, C. Masingboon, B. Boonchom, S. Seraphin, Scr. Mater. 56, 797 (2007)

    Article  CAS  Google Scholar 

  48. A.K.H. Bashir, N. Matinise, J. Sackey, K. Kaviyarasu, I.G. Madiba, L. Kodseti, F.I. Ezema, M. Maaza, Phys. E Low-Dimensional Syst. Nanostruct. 119, 114002 (2020)

    Article  CAS  Google Scholar 

  49. J. Huo, M. Wei, Mater. Lett. 63, 1183 (2009)

    Article  CAS  Google Scholar 

  50. D.J. Miner, J.R. Rice, R.M. Riggin, P.T. Kissinger, Anal. Chem. 53, 2258 (1981)

    Article  CAS  Google Scholar 

  51. S. Chitravathi, N. Munichandraiah, J. Electroanal. Chem. 764, 93 (2016)

    Article  CAS  Google Scholar 

  52. J.M. Zen, Y.S. Ting, Anal. Chim. Acta 342, 175 (1997)

    Article  CAS  Google Scholar 

  53. B.J. Sanghavi, A.K. Srivastava, Electrochim. Acta 55, 8638 (2010)

    Article  CAS  Google Scholar 

  54. E. Laviron, J. Electroanal. Chem. 101, 19 (1979)

    Article  CAS  Google Scholar 

  55. C. Li, Colloids Surf. B. Biointerfaces 55, 77 (2007)

    Article  CAS  Google Scholar 

  56. G. Liu, W. Ma, Y. Luo, D. Sun, S. Shao, J. Anal. Methods Chem. 2014, 984314 (2014)

    Google Scholar 

  57. N.T.V. Hoan, N.N. Minh, N.T.H. Trang, L.T.T. Thuy, C. Van Hoang, T.X. Mau, H.X.A. Vu, P.T.K. Thu, N.H. Phong, D.Q. Khieu, J. Nanomater. 2020, 9797509 (2020)

    Google Scholar 

  58. L. Švorc, P. Tomčík, J. Svítková, M. Rievaj, D. Bustin, Food Chem. 135, 1198 (2012)

    Article  Google Scholar 

  59. N.A. Odewunmi, A.N. Kawde, M. Ibrahim, Electroanalysis 30, 2311 (2018)

    Article  CAS  Google Scholar 

  60. H. Ibrahim, Y. Temerk, J. Electroanal. Chem. 780, 176 (2016)

    Article  CAS  Google Scholar 

  61. Y. Wen, J. Chang, L. Xu, X. Liao, L. Bai, Y. Lan, M. Li, J. Electroanal. Chem. 805, 159 (2017)

    Article  CAS  Google Scholar 

  62. A.S. Kumar, P. Swetha, J. Electroanal. Chem. 642, 135 (2010)

    Article  CAS  Google Scholar 

  63. O. Sarakhman, A. Benková, Ľ Švorc, Microchem. J. 175, 107132 (2022)

    Article  CAS  Google Scholar 

  64. M. Amiri-Aref, J.B. Raoof, R. Ojani, Sensors Actuators. B Chem. 192, 634 (2014)

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Van Lang University, Vietnam.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by N.Q.M, N.T.V.H, H.X.A.V, N.D.V.Q, N.H.P, T.N.T, L.V.T.S, L.V.T.S, T.C.T and N.T.T.T. The first draft of the manuscript was written by D.Q.K and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nguyen Thi Thanh Tu or Dinh Quang Khieu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 431 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man, N.Q., Tu, N.T.T., Vu, H.X.A. et al. Simultaneous determination of uric acid, xanthine, and caffeine in human urine samples using nickel ferrite/reduced graphene oxide modified electrode. J Mater Sci: Mater Electron 34, 59 (2023). https://doi.org/10.1007/s10854-022-09449-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09449-2

Navigation