Skip to main content

Advertisement

Log in

Enhanced electrical and energy storage properties of BNT-based ceramics by the nanocrystals-induced method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of BT nanocrystals on phase structure and electrical characteristics of lead-free BNT ceramics was investigated in this study. The molten-salt method was used to make the BT nanocrystals. All ceramics showed a pure perovskite phase. The density values ranged from 5.87 to 5.91 g/cm3. The highest density value was obtained for the sample of BT seed = 5 mol%. With increasing BT seed content, the dielectric constant (εr) at room temperature tended to increase. The sample of 10BTs (x = 10 mol%) had the highest dielectric constant (εr = 1652). For compositions of BT-added, the dielectric spectra showed a broad maximum around TF–R. The sample of 5BTs (x = 5 mol%) had the highest d33 value of 161 pC/N. Furthermore, a high energy storage density (W ~ 0.69 J/cm3) with the highest energy storage efficiency (η = 70%) was obtained from the sample of BT nanocrystals added (BTs = 0.10 mol%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

The authors confirm that all data generated or analyzed during this study are included in this published article. The data supporting the findings of this study are available within the article.

References

  1. Y. Fuda, K. Kumasaka, M. Katsuno, H. Sato, Y. Ino, Jpn. J. Appl. Phys. 36, 3050 (1997)

    Article  CAS  Google Scholar 

  2. L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959)

    Article  CAS  Google Scholar 

  3. G.O. Jones, P.A. Thomas, Acta. Cryst. B56, 426 (2000)

    Article  CAS  Google Scholar 

  4. T. Takenaka, K. Sakata, Ferroelectrics 95, 153 (1989)

    Article  CAS  Google Scholar 

  5. D. Hennings, A. Schnell, G. Simon, J. Am. Ceram. Soc. 65, 539 (1982)

    Article  CAS  Google Scholar 

  6. X. Wang, H. Yamada, C.N. Xu, Appl. Phys. Lett. 86, 022905 (2005)

    Article  Google Scholar 

  7. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  8. H. Nagata, T. Shinya, Y. Hiruma, T. Takenaka, I. Sakaguchi, H. Haneda, Ceram. Trans. 167, 213 (2005)

    CAS  Google Scholar 

  9. J. Suchanicz, W.S. Ptak, Ferroelectr. Lett. 12, 71 (1990)

    Article  CAS  Google Scholar 

  10. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid. State. 2, 2651 (1961)

    Google Scholar 

  11. S.R. Kanuru, K. Baskar, R. Dhanasekaran, Ceram. Int. 42, 6054 (2016)

    Article  CAS  Google Scholar 

  12. K. Uchino, Advanced Piezoelectric Material: Science and technology (Woodhead Publishing, Cambridge, 2017)

    Google Scholar 

  13. T. Takenaka, Lead-free piezoelectric ceramic, in Handbook of advanced ceramic, 2nd edn. (Elsevier, Amsterdam, 2013)

    Google Scholar 

  14. A. Herabut, A. Safari, J. Am. Ceram. Soc. 80, 2954 (1997)

    Article  CAS  Google Scholar 

  15. Y. Li, W. Chen, Q. Xu, J. Zhou, Y. Wang, H.J. Sun, Ceram. Int. 33(1), 95 (2007)

    Article  CAS  Google Scholar 

  16. M.J. Wu, Y.Q. Lu, X.X. Li, J. Am. Ceram. Soc. 90(11), 3642 (2007)

    Article  CAS  Google Scholar 

  17. V. Pal, R.K. Dwivedi, O.P. Thakur, Mater. Res. Bull. 51, 189 (2014)

    Article  CAS  Google Scholar 

  18. X. Wang, H. Gao, X. Hao, X. Lou, Ceram. Int. 45, 4274 (2019)

    Article  CAS  Google Scholar 

  19. W.P. Cao, J. Sheng, Y.L. Qiao, L. Jing, Z. Liu, J. Wang, W.L. Li, J. Eur. Ceram. Soc. 39, 4046 (2019)

    Article  CAS  Google Scholar 

  20. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991)

    Article  CAS  Google Scholar 

  21. R. Machado, V.B.D. Santos, D.A. Ochoa, Elastic J. Alloys. Compd. 690, 568 (2017)

    Article  CAS  Google Scholar 

  22. W. Bai, Y. Bian, J. Hao, J. Am. Ceram. Soc. 96, 246 (2013)

    Article  CAS  Google Scholar 

  23. Y. Huang, F. Li, H. Hao, F. Xia, H. Lui, S. Zhang, J. Materiomics. 5, 385 (2019)

    Article  Google Scholar 

  24. S.T. Zhang, A.B. Kounga, E. Aulbach, Appl. Phys. Lett. 91, 112906 (2007)

    Article  Google Scholar 

  25. X. Liu, H. Du, X. Liu, J. Shi, H. Fan, Ceram. Int. 42, 17876 (2016)

    Article  CAS  Google Scholar 

  26. C. Duran, S.T. McKinstry, G.L. Messing, J. Am. Ceram. Soc. 83, 2203 (2000)

    Article  CAS  Google Scholar 

  27. Z. Li, A. Wu, P.M. Vilarinho, Chem. Mater. 16, 717 (2004)

    Article  CAS  Google Scholar 

  28. S.K. Ye, J.Y. Fuh, L. Lu, Appl. Phys. Lett. 100, 252906 (2012)

    Article  Google Scholar 

  29. W. Bai, J. Hao, F. Fu, W. Li, B. Shen, J. Zhai, Mater. Lett. 97, 137 (2013)

    Article  CAS  Google Scholar 

  30. W. Bai, H. Li, J. Xi, J. Zhang, B. Shen, J. Zhai, J. Alloys. Compd. 656, 13 (2016)

    Article  CAS  Google Scholar 

  31. C. Shu, C.-Q. Wang, S. Luo, D.-Y. Zheng, J. Mater. Sci. 33, 5456 (2022)

    CAS  Google Scholar 

  32. P. Parjansri, U. Intatha, K. Pengpat, S. Eitssayeam, Appl. Phys. A. 125, 421 (2019)

    Article  Google Scholar 

  33. P. Parjansri, M. Kamnoy, S. Eitssayeam, J. Electron. Mater. 51, 1068 (2022)

    Article  CAS  Google Scholar 

  34. M. Kamnoy, K. Sutjarittangtham, P. Parjansri, U. Intatha, S. Eitssayeam, N. Raengthon, Ferroelectrics 511, 94 (2017)

    Article  CAS  Google Scholar 

  35. J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, J. Wang, Scr. Mater. 65, 771 (2011)

    Article  CAS  Google Scholar 

  36. J.Y. Ha, J.W. Choi, C.Y. Kang, D.J. Choi, H.J. Kim, S.J. Yoon, Mater. Chem. Phys. 90, 396 (2005)

    Article  CAS  Google Scholar 

  37. N. Chen, W. Yao, C. Liang, S. Xiao, J. Hao, Z. Xu, R. Chu, Ceram. Int. 42, 9660 (2016)

    Article  CAS  Google Scholar 

  38. P. Butnoi, S. Manotham, P. Jaita, C. Random, G. Rujijnagul, J. Eur. Ceram. Soc. 38, 3822 (2018)

    Article  CAS  Google Scholar 

  39. J. Lin, G. Ge, K. Zhu, H. Bai, B. Sa, F. Yan, G. Li, C. Shi, J. Zhai, X. Wu, Q. Zhang, Chem. Eng. J. 444, 136538 (2021)

    Article  Google Scholar 

  40. R.B. Atkin, R.M. Fulrath, J. Am. Ceram. Soc. 54, 265 (1971)

    Article  CAS  Google Scholar 

  41. I.B. Troitskaiaa, T.A. Gavrilova, S.A. Gromilov, D.V. Sheglov, V.V. Atuchin, R.S. Vemuri, C.V. Ramana, Mater. Sci. Eng. B 174, 159 (2010)

    Article  Google Scholar 

  42. V.V. Atuchin, A.S. Aleksandrovsky, O.D. Chimitova, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, B.G. Bazarov, J.G. Bazarova, J. Phys. Chem. C 118, 15404 (2014)

    Article  CAS  Google Scholar 

  43. H.T. Martirenat, J.C. Burfoot, J. Phys. C Solid State Phys. 7, 3182 (1974)

    Article  Google Scholar 

  44. M. Demartin, D. Damjanovic, Appl. Phys. Lett. 68, 3046 (1996)

    Article  CAS  Google Scholar 

  45. Y. Hiruma, H. Nagata, T. Takenaka, J. Appl. Phys. 105, 084112 (2009)

    Article  Google Scholar 

  46. G.A. Samara, J. Phys. Condens. Matter. 15, R367 (2003)

    Article  CAS  Google Scholar 

  47. D.M. Lin, K.W. Kwok, Curr. Appl. Phys. 10, 422 (2010)

    Article  Google Scholar 

  48. Y.M. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, S. Fang, Matter. Chem. Phys. 94, 328 (2005)

    CAS  Google Scholar 

  49. J.G. Hao, W.F. Bai, W. Li, B. Shen, J.W. Zhai, J. Appl. Phys. 114, 044103 (2013)

    Article  Google Scholar 

  50. J. Lin, Y. Cao, K. Zhu, F. Yan, C. Shi, H. Bai, G. Ge, J. Yang, W. Yang, Y. Shi, G. Li, H. Zengb, J. Zhai, J. Mater. Chem. A. 10, 7978 (2022)

    Article  CAS  Google Scholar 

  51. K.T.P. Seifert, W. Jo, J. Rödel, Appl. Phys. Lett. 91, 112906 (2017)

    Google Scholar 

  52. A. Zaman, Y. Iqbal, A. Hussain, M.H. Kim, R.A. Malik, J. Mater. Sci. 49, 3205 (2014)

    Article  CAS  Google Scholar 

  53. R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, C.W. Ahn, J.U. Rahman, T.K. Song, W.J. Kim, M.H. Kim, J. Am. Ceram. Soc. 98, 3842 (2015)

    Article  CAS  Google Scholar 

  54. X. Zhou, G. Xue, H. Luo, C.R. Bowen, D. Zhang, Prog. Mater. Sci. 122, 100836 (2021)

    Article  CAS  Google Scholar 

  55. A. Chauhan, S. Patel, R. Vaish, AIP. Adv. 4, 087106 (2014)

    Article  Google Scholar 

  56. R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, T.K. Song, W.J. Kim, M.H. Kim, J. Alloys. Compd. 682, 302 (2016)

    Article  CAS  Google Scholar 

  57. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Lin, Prog. Mater. Sci. 102, 72 (2019)

    Article  CAS  Google Scholar 

  58. T. Tunkasiri, G. Rujijanagul, J. Mater. Sci. Lett. 15, 1767 (1996)

    Article  CAS  Google Scholar 

  59. D. Damjanovic, J. Am. Ceram. Soc. 88, 2663 (2005)

    Article  CAS  Google Scholar 

  60. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)

    Article  CAS  Google Scholar 

  61. D.J. Kim, J.P. Maria, A.I. Kingon, S.K. Streiffer, J. Appl. Phys. 93, 5568 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Thailand Research Fund (TRF) under the Research Grant for new scholar (MRG6180111), Faculty of Science and Technology, Rajamangala University of Technology Krungthep under the Research and Development Institute for financial support. Also, this research work was partially supported by Chiang Mai University.

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed significantly to the work’s conception or design; data acquisition, analysis, and interpretation; the development of new software used in the work; drafted or substantially revised the work; and approved the submitted version.

Corresponding author

Correspondence to Piewpan Parjansri.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parjansri, P., Kamnoy, M., Eittsayeam, S. et al. Enhanced electrical and energy storage properties of BNT-based ceramics by the nanocrystals-induced method. J Mater Sci: Mater Electron 34, 48 (2023). https://doi.org/10.1007/s10854-022-09443-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09443-8

Navigation