Skip to main content
Log in

Influence of MoS2 film thickness for nitric oxide gas sensing applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Contemporary material research is more significant for societal progress. There are several materials accessible in this environment. Among them, certain materials have excellent sensing characteristics for specific gases. According to the literature, two-dimensional materials exhibit unique features that pique the interest of researchers. Molybdenum disulphide (MoS2) is a well-known two-dimensional transition metal dichalcogenide material with exceptional structural and compositional features. These characteristics can be used to detect gases. The effect of MoS2 thickness on nitric oxide gas sensing has been demonstrated in the present work. In the current study, thin films of MoS2 having thicknesses of 20 nm, 40 nm, and 60 nm were deposited by the utilization of radiofrequency (13.56 MHz) sputtering. Scanning electron microscopy and X-ray diffraction were used to study the morphological and structural aspects of the deposited MoS2 films. While these films are examined with nitric oxide, the 60-nm film detects the NO gas with remarkable sensitivity at 40 °C with a response time of 16 s. The results will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made on request.

Code availability

Not applicable.

References

  1. J. Theerthagiri, R.A. Senthil, B. Senthilkumar, A.R. Polu, J. Madhavan, M. Ashok kumar, J. Solid State Chem. (2017). https://doi.org/10.1016/j.jssc.2017.04.041

    Article  Google Scholar 

  2. Ananya Dey, Mater. Sci. Eng. (2018). https://doi.org/10.1016/j.mseb.2017.12.036

    Article  Google Scholar 

  3. M. Zhang, Z. Yuan, J. Song, C. Zheng, Sen. Actuators B Chem. (2010). https://doi.org/10.1016/j.snb.2010.05.001

    Article  Google Scholar 

  4. T. Anukunprasert, C. Saiwan, E. Traversa, Sci. Technol. Adv. Mater. (2005). https://doi.org/10.1016/j.stam.2005.02.020

    Article  Google Scholar 

  5. A. Gusain, N.J. Joshi, P. Varde, D. Aswal, Sen. Actuators B Chem. (2017) https://doi.org/10.1016/j.snb.2016.07.176

    Article  Google Scholar 

  6. A.S.N. Salami, Sen. Actuators B Chem. (2016). https://doi.org/10.1016/j.snb.2016.06.033

    Article  Google Scholar 

  7. F. Guix, I. Uribesalgo, M. Coma, F. Munoz, Prog. Neurobiol. (2005). https://doi.org/10.1016/j.pneurobio.2005.06.001

    Article  Google Scholar 

  8. J.S. Stamler, Coron. Artery Dis. 10, 273–276 (1999)

    Article  Google Scholar 

  9. Y. Xia, J. Wang, J.L. Xu, X. Li, D. Xie, L. Xiang, S. Komarneni, Appl. Mater. Interfaces (2016) https://doi.org/10.1021/acsami.6b12501

    Article  Google Scholar 

  10. Q.H. Wang, K.K. Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol 7, 699–712 (2012)

    Article  CAS  Google Scholar 

  11. S. Balendhran, S. Walia, H. Nili, J.Z. Ou, S. Zhuiykov, R.B. Kaner, S. Sriram, M. Bhaskaran, K. Kalantar-zadeh, Adv. Funct. Mater. (2013). https://doi.org/10.1002/adfm.201300125

    Article  Google Scholar 

  12. K.F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz Appl. Phys. Letters 105, 136805 (2010)

    Google Scholar 

  13. A. Kumar, A. Sanger, A. Kumar, R. Chandra, RSC Adv. 7, 39666–39675 (2017)

    Article  CAS  Google Scholar 

  14. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. (2007). https://doi.org/10.1038/nmat1967

    Article  Google Scholar 

  15. S. Sharma, A. Kumar, D. Kaur, A.I.P. Conf. Proc. (2018). https://doi.org/10.1063/1.5032596

    Article  Google Scholar 

  16. T. Delorme, M. Najaf, P. Nasr, World J. Neurosci. (2012). https://doi.org/10.4236/wjns.2012.24036

    Article  Google Scholar 

  17. N. Dossi et al., Lab. Chip. 12, 153–158 (2012)

    Article  CAS  Google Scholar 

  18. N. Agbor, J. Cresswell, M. Petty, A. Monkman, Sen. Actuators B Chem. 41, 137–141 (1997)

    Article  CAS  Google Scholar 

  19. Z. Gu, Y. Xu, K. Gao, Opt. Lett. (2006) https://doi.org/10.1364/ol.31.002405

    Article  Google Scholar 

  20. G. Pennazza et al., IEEE Sens. J. (2017) https://doi.org/10.1109/JSEN.2017.2784899

    Article  Google Scholar 

  21. B. Liu et al., ACS nano (2014) https://doi.org/10.1021/nn5015215

    Article  Google Scholar 

  22. G. Eranna, B. Joshi, D. Runthala, R. Gupta, Crit. Rev. Solid State Mater. (2004) https://doi.org/10.1080/10408430490888977

    Article  Google Scholar 

  23. S. Ramu et al., Mater. Res. Express 6, 085075 (2019)

    Article  CAS  Google Scholar 

  24. B. Radisavljevic, A. Radenovic, J. Brivio et al., Nat. Nanotechnol. (2011). https://doi.org/10.1038/nnano.2010.279

    Article  Google Scholar 

  25. B. Radisavljevic, M.B. Whitwick, Kis, ACS Nano. (2011) https://doi.org/10.1021/nn203715c

    Article  Google Scholar 

  26. G. Du, Z. Guo, S. Wang, R. Zeng, Z. Chen, H. Liu, Chem. Commun. 46, 1106–1108 (2010)

    Article  CAS  Google Scholar 

  27. S. Das, M. Kim, J. Lee, W. Choi, Crit. Rev. Solid State Mater. (2014) https://doi.org/10.1080/10408436.2013.836075

    Article  Google Scholar 

  28. S. Zhao, J. Xue, W. Kang, Chem. Phys. (2014) https://doi.org/10.1016/j.cplett.2014.01.043

    Article  Google Scholar 

  29. L. Ottaviano, S. Palleschi et al., J. 2D Mater. (2017). https://doi.org/10.1088/2053-1583/aa8764

    Article  Google Scholar 

  30. D.L.C. Ky, T. Khac, C.T. Le, Friction (2018). https://doi.org/10.1007/s40544-017-0172-8

    Article  Google Scholar 

  31. G. Magda, J. Pető, G. Dobrik et al., Sci. Rep. 5, 14714 (2015)

    Article  CAS  Google Scholar 

  32. Y. Huang, Y.H. Pan, R. Yang et al., Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-16266-w

    Article  Google Scholar 

  33. Kyle DiCamillo,Sergiy Krylyuk, WShi Davydov Albert., M. Paranjape, IEEE Trans. Nanotechnol. (2019). https://doi.org/10.1109/TNANO.2018.2868672

    Article  Google Scholar 

  34. Hammad ul Hassan, Jihun Mun,Byung Soo Kang, J.Y. Song, J. R Soc. Chem. (2016). https://doi.org/10.1039/C6RA10132A

    Article  Google Scholar 

  35. Y.-H. Lee, X.-Q. Zhang et al., J. Adv. Mater. (2012). https://doi.org/10.1002/adma.201104798

    Article  Google Scholar 

  36. H. Xinsheng Wang, Y. Feng, Wu, Liying, Jiao, J. Am. Chem. Soc. (2013). https://doi.org/10.1021/ja4013485

    Article  Google Scholar 

  37. Fu. Deyi et al., J. Am. Chem. Soc. (2017). https://doi.org/10.1021/jacs.7b05131

    Article  Google Scholar 

  38. A. Siddhartha Dam, A.G. Thakur, S. Hussain, Thin Solid Films. (2019) https://doi.org/10.1016/j.tsf.2019.04.041

    Article  Google Scholar 

  39. H.-S. Kim, M.D. Kumar, J. Kim, D. Lim, Sens. Actuator A Phys. (2018). https://doi.org/10.1016/j.sna.2017.11.050

    Article  Google Scholar 

  40. M.R. Wu, W.Z. Li, C.Y. Tung et al., Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-43752-z

    Article  Google Scholar 

  41. B. Cho, M. Hahm, M. Choi et al., Sci. Rep. (2015). https://doi.org/10.1038/srep08052

    Article  Google Scholar 

  42. A. Shokri, N. Salami, Sen. Actuators B Chem. (2016). https://doi.org/10.1016/j.snb.2016.06.033

    Article  Google Scholar 

  43. A. Mantarcı, M. Kundakçi, Opt. Quant. Electron. (2019) https://doi.org/10.1007/s11082-019-1795-y

    Article  Google Scholar 

  44. P.R. Nair, M.A. Alam, IEEE Trans. Electron. Devices. (2007) https://doi.org/10.1109/TED.2007.909059

    Article  Google Scholar 

  45. G. Korotcenkov, Mater. Sci. Eng. B (2007) https://doi.org/10.1016/j.mseb.2007.01.044

    Article  Google Scholar 

  46. M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, L. Ottaviano, Sen. Actuators B Chem. (2015). https://doi.org/10.1016/j.snb.2014.10.099

    Article  Google Scholar 

  47. S. Kaur, S. Kailasaganapathi et al., Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2016.10.085

    Article  Google Scholar 

Download references

Acknowledgements

I want to thank Dr. D.N.N. Murty, Associate Professor, HOD Electrical Department, IIT Tirupati, for giving permission to utilize equipment needed to complete the experimental work.

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

PK, AKK, YRK, VRKRD did conceptualization. PK, AKK, YRK, VRKRD performed methodology, formal analysis and investigation, writing—original draft preparation, and writing—review and editing. AKK and VRKRD supervised the study.

Corresponding author

Correspondence to Prasanti Korapati.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korapati, P., Kumari, A.K., Kosuri, Y.R. et al. Influence of MoS2 film thickness for nitric oxide gas sensing applications. J Mater Sci: Mater Electron 34, 72 (2023). https://doi.org/10.1007/s10854-022-09432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09432-x

Navigation