Skip to main content
Log in

Synthesis of CdSe QDs with various stoichiometric ratios of Se under the influence of ethanol/ethylenediamine for photovoltaic application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A sincere effort has been taken to design and fabricate a Cadmium Selenide (CdSe) Quantum Dot solar cell by varying the concentration of Se (0.1, 0.2, and 0.3 mmol) using ethanol and ethylenediamine as solvents in equal ratio. The proposed solar cell is tested for photoconversion efficiency with different sizes of the quantum dots (7 nm, 8 nm, and 8.9 nm). The XRD pattern reveals that CdSe quantum dots has attained cubic structure with face-centered lattice. The prepared quantum dots are subjected to UV–Visible spectroscopic study and bandgaps are obtained as 3.02 eV, 2.91 eV, and 2.89 eV for 7 nm, 8 nm, and 8.9 nm quantum dots, respectively. In the photoluminescence spectroscopy, two emission peaks are observed at 370 nm and at 473 nm which corresponds to the band–to–band transition. Among the different sizes of the quantum dots, the particle size of 7 nm has given higher photoconversion efficiency of 0.6680% with 0.1 mmol of Se in CdSe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. H. Liu, H. Luan, Y. Sun, Hu. Jie, F. Wang, Y. Sui, S. Lv, L. Yang, The fabrication of ZnO solar cells double-sensitized by CdS@CdSe quantum dots through anion exchange method. J. Mater. Sci.: Mater. Electron 31, 20080–20089 (2020). https://doi.org/10.1007/s10854-020-04529-7

    Article  CAS  Google Scholar 

  2. J. Chen, W. Lei, Q. Deng, Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot. Nanoscale 3, 674–677 (2011). https://doi.org/10.1039/c0nr00591f

    Article  CAS  Google Scholar 

  3. Ru. Zhou, Q. Zhang, E. Uchaker, J. Lan, M. Yin, G. Cao, Mesoporous TiO2 beads for high-efficiency CdS/CdSe quantum dot co-sensitized solar cells. J. Mater. Chem. A. 2, 2517–2525 (2014). https://doi.org/10.1039/c3ta13460a

    Article  CAS  Google Scholar 

  4. J. Kim, H. Choi, C. Nahm, C. Kim, S. Nam, S. Kang, D.-R. Jung, Jae Ik Kim, Joonhyeon Kang, and Byungwoo Park, “The role of a TiCl4 treatment on the performance of CdS quantum-dot-sensitized solar cells.” J. Power Sources 220, 108–113 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.133

    Article  CAS  Google Scholar 

  5. Y. Al-Douri, U. Hashim, R. Khenata, A.H. Reshak, M. Ameri, A. Bouhemadou, A. Rahim Ruslinda, M.K. Md Arshad, Ab initio method of optical investigations of CdS1-xTex alloys under quantum dots diameter effect. Sol. Energy 115, 33–39 (2015). https://doi.org/10.1016/j.solener.2015.02.024

    Article  CAS  Google Scholar 

  6. G. Zhu, L. Pan, Xu. Tao, Z. Sun, CdS/CdSe-cosensitized TiO2 photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method. ACS Appl. Mater. Interfaces 3, 3146–3151 (2011). https://doi.org/10.1021/am200648b

    Article  CAS  Google Scholar 

  7. J. Tian, Q. Zhang, L. Zhang, R. Gao, L. Shen, S. Zhang, Qu. Xuanhui, G. Cao, ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. Nanoscale 5, 936–943 (2013). https://doi.org/10.1039/c2nr32663a

    Article  CAS  Google Scholar 

  8. V. Gonzalez-Pedro, Xu. Xueqing, I. Mora-Sero, J. Bisquert, Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano 4, 5783–5790 (2010). https://doi.org/10.1021/nn101534y

    Article  CAS  Google Scholar 

  9. T.K. Das, P. Ilaiyaraja, C. Sudakar, Whispering gallery mode enabled efficiency enhancement: defect and size-controlled CdSe quantum dot sensitized whisperonic solar cells. Sci. Rep. 8, 1–12 (2018). https://doi.org/10.1038/s41598-018-27969-y

    Article  CAS  Google Scholar 

  10. K. Veerathangam, M.S. Padian, P. Ramasamy, Size-dependent photovoltaic performance of cadmium sulfide (CdS) quantum dots for solar cell applications. J. Alloys Compd. 735, 202–208 (2018). https://doi.org/10.1016/j.jallcom.2017.11.055

    Article  CAS  Google Scholar 

  11. A. Ganguly, S.S. Nath, Mn-doped CdS quantum dots as sensitizers in solar cells. Mater. Sci. Eng. B 255, 114532–114536 (2020). https://doi.org/10.1016/j.mseb.2020.114532

    Article  CAS  Google Scholar 

  12. M. Marandi, Sepideh Hossein Abadi, and Alireza Eftekhari, “A fast combinative chemical precipitation/microwave-activated approach for the synthesis of alloyed CdSexTe1-x nanocrystals for application in quantum dot-sensitized solar cells.” J. Mater. Sci.: Mater. Electron 33, 16713–16727 (2022). https://doi.org/10.1007/s10854-022-08514-0

    Article  CAS  Google Scholar 

  13. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water”. RSC Adv. 11, 11500–11512 (2021). https://doi.org/10.1039/d0ra10288a

    Article  CAS  Google Scholar 

  14. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. 104, 2952–2965 (2021). https://doi.org/10.1111/jace.17696

    Article  CAS  Google Scholar 

  15. H.M. Aung Kyaw, K.A. Yaacob, A.F. Mohd Noor, A. Matsuda, G. Kawamura, Effect of deposition time CdSe-TiO2 nanocomposite film by electrophoretic deposition for quantum dot sensitized solar cell. Mater. Today: Proc. 17, 736–742 (2019). https://doi.org/10.1016/j.matpr.2019.06.357

    Article  CAS  Google Scholar 

  16. M.J. Almendral-Parra, A. Alonso-Mateos, J.F. Boyero-Benito, S. Sanchez-Paradinas, E. Rodriguez-Fernandez, A novel approach to the fabrication of CdSe quantum dots in aqueous solution: procedures for controlling size, fluorescence intensity, and stability over time. J. Nanomater. (2014). https://doi.org/10.1155/2014/397469

    Article  Google Scholar 

  17. Y. Al-Douri, N. Badi, C.H. Voon, Synthesis of carbon-based quantum dots from starch extracts: optical investigations. Luminescence 33, 1–7 (2017). https://doi.org/10.1002/bio.3408

    Article  CAS  Google Scholar 

  18. Y. Al-Douri, U. Hashim, A. Bouhemadou, M. Ameri, Zinc effect on quantum dots potential of PbI2 nanostructures. J. Nanoelectron. Optoelectron. 10, 705–710 (2015). https://doi.org/10.1166/jno.2015.1811

    Article  CAS  Google Scholar 

  19. Y. Al-Douri, R. Khenata, A.H. Reshak, Investigated optical studies of Si quantum dot. Sol. Energy 85, 2283–2287 (2011). https://doi.org/10.1016/j.solener.2011.06.017

    Article  CAS  Google Scholar 

  20. Y. Al-Douri, K.D. Verma, D. Prakash, ptical investigations of a blue shift in ZnS quantum dots”. Superlattices Microstruct. 88, 662–667 (2015). https://doi.org/10.1016/j.spmi.2015.10.029

    Article  CAS  Google Scholar 

  21. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Control sonochemical parameter to prepare pure Zn03.5Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem 58, 104619 (2019). https://doi.org/10.1016/j.ultsonch.2019.104619

    Article  CAS  Google Scholar 

  22. M.A. Makarim, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int. J. Hydrog. Energy 47, 14319–14330 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  CAS  Google Scholar 

  23. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, A new nanocomposite superionic system (CdHgI4/HgI2): synthesis, characterization and experimental investigation”. Adv. Powder Technol. 28, 1258–1262 (2017). https://doi.org/10.1016/j.apt.2017.02.013

    Article  CAS  Google Scholar 

  24. A.J. Nozik, Quantum dot solar cells. Phys. E Low Dimens. Syst. Nanostruct. 14, 115–120 (2002). https://doi.org/10.1016/S1386-9477(02)00374-0

    Article  CAS  Google Scholar 

  25. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, “Photo-degradation of organic dyes: simple chemical synthesis of Ni (OH)2 nanoparticles, Ni/Ni (OH)2 and Ni/NiO magnetic nanocomposites.” J. Mater. Sci.: Mater. Electron 27, 1244–1253 (2016). https://doi.org/10.1007/s10854-015-3882-6

    Article  CAS  Google Scholar 

  26. A.B. Kashyout, H. Soliman, M. Fathy, E.A. Gomaa, A.A. Zidan, AA, CdSe quantum dots for solar cell devices. Int. J. Photoenergy. (2012). https://doi.org/10.1155/2012/952610

    Article  Google Scholar 

  27. A.N. Yadav, A.K. Singh, P.P. Sharma, P.R. Solanki, K. Singh, Optical properties of highly luminescent, monodisperse, and ultrastable CdSe/V2O5 core/shell quantum dots for in-vitro imaging. J. Mater. Sci.: Mater. Electron 29, 18650–18659 (2018). https://doi.org/10.1007/s10854-018-9984-1

    Article  CAS  Google Scholar 

  28. H. Li, J. Jiao, Qi. Ye, Wu. Zhixin, D. Luo, D. Xiong, Controllable synthesis of CdSe/ZnS core-shell quantum dots by one-step thermal injection and application in light-emitting diodes. J. Mater. Sci.: Mater. Electron 32, 22024–22034 (2021). https://doi.org/10.1007/s10854-021-06659-y

    Article  CAS  Google Scholar 

  29. Y. Al-Douri, H. Khachai, R. Khenata, A. Bouhemadou, First-principles calculations for optical investigations of PbX (X=S, Te) compounds under quantum dots diameter effect. Can. J. Phys. 93, 1–5 (2015). https://doi.org/10.1139/cjp-2015-0145

    Article  CAS  Google Scholar 

  30. G. Larramona, C. Chone, A. Jacob, D. Sakakura, B. Delatouche, D. Pere, X. Cieren, M. Nagino, R. Bayon, Chem. Mater. 18, 1688 (2006)

    Article  CAS  Google Scholar 

  31. K. Ernst, R. Engelhardt, K. Ellmer, C. Kelch, H.J. Muffler, MCh. Lux-Steiner, R. Konenkamp, Thin Solid Films 26, 387 (2001)

    Google Scholar 

  32. A. Zaban, I.O. Micic, A.B. Gregg, A.J. Nozik, Langmuir 14, 3153 (1998)

    Article  CAS  Google Scholar 

  33. L.M. Peter, K.G.U. Wijayantha, D.J. Riley, J.P.J. Waggett, Phys. Chem. B 107, 8378 (2003)

    Article  CAS  Google Scholar 

  34. Yu. Pingrong, K. Zhu, A.G. Norman, S. Ferrere, A.J. Frank, A.J. Nozik, Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J. Phys. Chem. B 110, 25451–25454 (2006). https://doi.org/10.1021/jp064817b

    Article  CAS  Google Scholar 

  35. I. Kaiser, K. Ernst, Ch.H. Fischer, R. Konenkamp, C. Rost, I. Sieber, MCh. Lux-Steiner, The eta-solar cell with CuInS2: a photovoltaic cell concept using an extremely thin absorber (eta). Sol. Energy Mater. Sol. Cells 67, 89 (2001). https://doi.org/10.1016/s0927-0248(00)00267-1

    Article  CAS  Google Scholar 

  36. I. Robel, V. Subramanian, M. Kuno, P.V.J. Kamat, J. Am. Chem. Soc. 128, 2385 (2006)

    Article  CAS  Google Scholar 

  37. M.M. Rahman, M.R. Karim, H.F. Alharbi, B. Aldokhayel, T. Uzzaman, H. Zahir, Cadmium selenide quantum dots for solar cell applications: a review. Chem. Asian J. 16, 902–921 (2021). https://doi.org/10.1002/asia.202001369

    Article  CAS  Google Scholar 

  38. G. Rezaee, S.Z. Mortazavi, S. Mirershadi, A. Reyhani, Efficiency enhancement of CdSe quantum dots assisted Si-solar cell. J. Mater. Sci.: Mater. Electron 29, 500–508 (2018). https://doi.org/10.1007/s10854-017-7939-6

    Article  CAS  Google Scholar 

  39. P. Wang, D. Li, J. Chen, X. Zhang, J. Xian, X. Yang, X. Zheng, X. Li, Yu. Shao, A novel and green method to synthesize CdSe quantum dots-modified TiO2 and its enhanced visible light photocatalytic activity. Appl. Catal. B: Environ. 160–161, 217–226 (2014). https://doi.org/10.1016/j.apcatb.2014.05.032

    Article  CAS  Google Scholar 

  40. P. Peng, D.J. Milliron, S.M. Hughes, J.C. Johnson, A. Paul Alivisatos, R.J. Saykally, Femtosecond spectroscopy of carrier relaxation dynamics in type II CdSe/CdTe tetrapod heteronanostructures. Nano Lett. 5(9), 1809–1813 (2005). https://doi.org/10.1021/nl0511667

    Article  CAS  Google Scholar 

  41. X. Liu, C. Ma, Y. Yan, G. Yao, Y. Tang, P. Huo, W. Shi, Y. Yan, Hydrothermal Synthesis of cdse quantum dots and their photocatalytic activity on degradation of cefalexin. Ind. Eng. Chem. Res. 52, 15015–15023 (2013). https://doi.org/10.1021/ie4028395

    Article  CAS  Google Scholar 

  42. K. Taretto, U. Rau, Prog. Photovolt: Res. Appl. 12, 573 (2004)

    Article  CAS  Google Scholar 

  43. A.J. Nozik, Quantum dot solar cells. Phys. E: Low-Dimens. Syst. Nanostruct. 14, 115–120 (2002). https://doi.org/10.1016/S1386-9477(02)00374-0

    Article  CAS  Google Scholar 

  44. S.M. Ali, S.M. Ramay, M.H. Aziz, M.S. AlGarawi, S.S. AlGhamd, A. Mahmood, T.S. Alkhuraiji, S. Atiq, Efficiency enhancement of perovskite solar cells by incorporation of CdS quantum dot through fast electron injection. Org. Electron. 62, 21–25 (2018). https://doi.org/10.1016/j.orgel.2018.07.012

    Article  CAS  Google Scholar 

  45. Y. Al-Douri, H. Khachai, R. Khenata, Chalcogenides-based quantum dots: optical investigation using first-principles calculations. Mater. Sci. Semicond. Process 39, 276–282 (2015). https://doi.org/10.1016/j.mssp.2015.05.016

    Article  CAS  Google Scholar 

  46. Y. Al-Douri, H. Baaziz, Z. Charifi, R. Khenata, U. Hashim, M. Al-Jassim, Further optical properties of CdX (X=S, Te) compounds under quantum dot diameter effect: Ab initio method. Renew. Energy 45, 232–236 (2012). https://doi.org/10.1016/j.renene.2012.02.020

    Article  CAS  Google Scholar 

  47. J. Aldana, Y.A. Wang, X. Peng, “Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols.” J. Am. Chem. Soc. 123, 8844–8850 (2001). https://doi.org/10.1021/ja016424q

    Article  CAS  Google Scholar 

  48. S.J. Rosenthal, J. McBride, S.J. Pennycook, L.C. Feldman, Synthesis, surface studies, composition and structural characterization of CdSe, core/shell, and biologically active nanocrystals. Surf. Sci. Rep. 62, 111–157 (2007). https://doi.org/10.1016/j.surfrep.2007.02.001

    Article  CAS  Google Scholar 

  49. Yu. Yongli, Xu. Linru, J. Chen, H. Gao, S. Wang, J. Fang, Xu. Shukun, Hydrothermal synthesis of GSH-TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells. Colloids Surf. B: Biointerfaces 95, 247–253 (2012). https://doi.org/10.1016/j.colsurfb.2012.03.011

    Article  CAS  Google Scholar 

  50. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrog. Energy 44, 24005–24016 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  CAS  Google Scholar 

  51. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, Hydrothermal synthesis of nickel hydroxide nanostructures and flame retardant poly vinyl alcohol and cellulose acetate nanocomposites. J. Nanostruct. 6, 80–85 (2016). https://doi.org/10.7508/jns.2016.01.013

    Article  CAS  Google Scholar 

  52. G. Vinoth, P. Sakthivel, S. Abinaya, M.R. Kadiresan, Crystallographic, optical, photoluminescence and electrical properties of CuS quantum dots: influence of ethylenediamine. Results Opt. 9, 100283 (2022). https://doi.org/10.1016/j.rio.2022.100283

    Article  Google Scholar 

  53. S. Abinaya, G. Vinoth, M.R. Kadiresan, Stimulus effect of solvents on cadmium sulfide quantum dots prepared for solar cell application. J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-022-02438-2

    Article  Google Scholar 

  54. D.V. Talapin, S.K. Poznyak, N.P. Gaponik, A.L. Rogach, A. Eychmuller, Synthesis of surface—modified colloidal semiconductor nanocrystals and study of photoinduced charge separation and transport in nanocrystal-polymer composites. Phys. E:Low-Dimens. Syst. Nanostruct. 14, 237–241 (2002). https://doi.org/10.1016/s1386-9477(02)00391-0

    Article  CAS  Google Scholar 

  55. J.K. Jakovljevic, Z. Stojanovic, J.M. Nedeljkovic, J. Mater. Chem. Phys. 41, 5014 (2006)

    Google Scholar 

  56. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  57. P.K. Khanna, R.R. Gokhale, V.V.V.S. Subbarao, K.W. Narendra Singh, B.K. Das. Jun, Synthesis and optical properties of CdS/PVA nanocomposites. Mater. Chem. Phys. 94, 454–459 (2005). https://doi.org/10.1016/j.matchemphys.2005.05.006

    Article  CAS  Google Scholar 

  58. H. Yao, N. Kitamura, Bull. Chem. Soc. Jpn. 69, 1227 (1996)

    Article  CAS  Google Scholar 

  59. Z. Li, Yu. Libo, H. Song, L. Feng, X. Wang, Construction of TiO2NP@TiO2 NT double-layered structural photoanode to enhance the photovoltaic performance of CdSe/CdS quantum dots sensitized solar cells. J. Mater. Sci.: Mater. Electron 29, 18059–18066 (2018). https://doi.org/10.1007/s10854-018-9915-1

    Article  CAS  Google Scholar 

  60. K. Surana, I.T. Salisu, R.M. Mehra, B. Bhattacharya, A simple synthesis route of low-temperature CdSe-CdS core-shell quantum dots and its application in solar cell. Opt. Mater. 82, 135–140 (2018). https://doi.org/10.1016/j.optmat.2018.05.060

    Article  CAS  Google Scholar 

  61. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  62. P. Malik, J. Singh, R. Kakkar, A review on CdSe quantum dots in sensing. Adv. Mat. Lett. 5(11), 612–628 (2014). https://doi.org/10.5185/amlett.2014.4562

    Article  CAS  Google Scholar 

  63. K. Surana, R.M. Mehra, B. Bhattacharya, H.W. Rhee, A.R. Polu, P.K. Singh, A comprehensive study of chalcogenide quantum dot sensitized solar cells with a new solar cell exceeding 1V output. Renew. Sustain. Energy Rev. 52, 1083–1092 (2015). https://doi.org/10.1016/j.rser.2015.07.133

    Article  CAS  Google Scholar 

  64. Z.K. Yang, L.X. Song, Y. Teng, J. Xia, Ethylenediamine -modulated synthesis of highly monodisperse copper sulfide micro flowers with excellent photocatalytic performance. J. Mater. Chem. A. 2, 20004–20009 (2014). https://doi.org/10.1039/C4TA04232H

    Article  CAS  Google Scholar 

  65. C.V.V.M. Gopi, M.V. Haritha, Y.S. Lee, H.J. Kim, ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high - efficiency quantum dot - sensitized solar cells. J. Mater. Chem. A. 4, 8161–8171 (2016). https://doi.org/10.1039/C6TA02415G

    Article  CAS  Google Scholar 

  66. C.V.V.M. Gopi, M.V. Haritha, S.K. Kim, H.J. Kim, Facile fabrication of highly efficient carbon nanotube thin-film replacing CuS counter electrode with enhanced photovoltaic performance in quantum dot—sensitized solar cells. J. Power Sources 311, 111–120 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.039

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SA: Methodology, Formal analysis, Writing—original draft, GV: Conceptualization, Writing – review and editing, and MRK: Supervision.

Corresponding author

Correspondence to Mohan Rangam Kadiresan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abinaya, S., Vinoth, G. & Kadiresan, M.R. Synthesis of CdSe QDs with various stoichiometric ratios of Se under the influence of ethanol/ethylenediamine for photovoltaic application. J Mater Sci: Mater Electron 34, 44 (2023). https://doi.org/10.1007/s10854-022-09426-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09426-9

Navigation