Skip to main content
Log in

Controllable preparation of CaCu3Ti4O12 nanowires and its strengthening effect on high dielectric polymer composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CaCu3Ti4O12 nanowires (CCTO-NWs) with different aspect ratios were synthesized by two-step hydrothermal method. CCTO-NWs/PVDF composites were prepared using CCTO-NWs as filler and polyvinylidene fluoride (PVDF) as matrix. The effects of CCTO-NWs content and its aspect ratio on dielectric properties of composites were investigated. Results showed that aspect ratios of CCTO-NWs were obtained as 11.84, 14.47, 17.11, and 19.74 by controlling the first hydrothermal reaction temperature to be 180 °C, 200 °C, 220 °C, and 240 °C. At 102 Hz, the dielectric constant of 70-wt% CCTO-NWs/PVDF composite can reach 62.94, which is 3.7 times higher than that of 10-wt% CCTO-NWs/PVDF composite (13.47). Adding CCTO-NWs with high aspect ratio into matrix can effectively improve dielectric constant. When CCTO-NWs content is 60-wt%, compared with fillers with an aspect ratio of 11.84, fillers with an aspect ratio of 19.74 can make the dielectric constant of composites increase about 64%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. X. Zhang, Y. Shen, B. Xu et al., Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv. Mater. 28(10), 2055–2061 (2016). https://doi.org/10.1002/adma.201503881

    Article  CAS  Google Scholar 

  2. R. Su, Z.D. Luo, D.W. Zhang et al., High energy density performance of polymer nanocomposites induced by designed formation of BaTiO3@sheet-like TiO2 hybrid nanofillers. J. Phys. Chem. C 120(22), 11769–11776 (2016). https://doi.org/10.1021/acs.jpcc.6b01853

    Article  CAS  Google Scholar 

  3. Z.M. Dang, J.K. Yuan, S.H. Yao et al., Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25(44), 6334–6365 (2013). https://doi.org/10.1002/adma.201301752

    Article  CAS  Google Scholar 

  4. Z.M. Dang, Y.Q. Lin, H.P. Xu et al., Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability. Adv. Funct. Mater. 18(10), 1509–1517 (2008). https://doi.org/10.1002/adfm.200701077

    Article  CAS  Google Scholar 

  5. Y.D. Jiang, X. Zhang, Z.H. Shen et al., Ultrahigh breakdown strength and improved energy density of polymer nanocomposites with gradient distribution of ceramic nanoparticles. Adv. Funct. Mater. 30(4), 1906112 (2020). https://doi.org/10.1002/adfm.201906112

    Article  CAS  Google Scholar 

  6. W. Wan, J.R. Luo, C. Huang et al., Calcium copper titanate/polyurethane composite films with high dielectric constant, low dielectric loss and super flexibility. Ceram. Int. 44(5), 5086–5092 (2018). https://doi.org/10.1016/j.ceramint.2017.12.108

    Article  CAS  Google Scholar 

  7. J. Yang, X.T. Zhu, H.L. Wang et al., Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via constructing hollow-structured filler framework. Compos.A 131, 105814 (2020). https://doi.org/10.1016/j.compositesa.2020.105814

    Article  CAS  Google Scholar 

  8. Y.L. Su, H. Huang, Advances on the study of giant dielectric constant CaCu3Ti4O12/polymer composites. J. Mater. Eng. 4(2), 94–98 (2014). https://doi.org/10.3969/j.issn.1001-4381.2013.06.001

    Article  CAS  Google Scholar 

  9. G. Liu, Y. Feng, T.D. Zhang et al., High-temperature all-organic energy storage dielectric with performance of self-adjusting electric field distribution. J. Mater. Chem. A 9(30), 16384–16394 (2021). https://doi.org/10.1039/D1TA02668B

    Article  CAS  Google Scholar 

  10. W.T. Dong, L. Xiao, W. Hu et al., Wearable human-machine interface based on PVDF piezoelectric sensor. Trans. Inst. Meas. Control 39(4), 398–403 (2017). https://doi.org/10.1177/0142331216672918

    Article  Google Scholar 

  11. D.J. Hou, J. Zhou, W. Chen et al., Core@double-shell structured fillers for increasing dielectric constant and suppressing dielectric loss of PVDF-based composite films. Ceram. Int. 48(16), 22691–22698 (2022). https://doi.org/10.1016/j.ceramint.2022.03.177

    Article  CAS  Google Scholar 

  12. L.J. Lu, W.Q. Ding, J.Q. Liu et al., Flexible PVDF based piezoelectric nanogenerators. Nano Energy. 78, 105251 (2020). https://doi.org/10.1016/j.nanoen.2020.105251

    Article  CAS  Google Scholar 

  13. R. Guo, H. Luo, X.F. Zhou et al., Ultrahigh energy density of poly (vinylidene fluoride) from synergistically improved dielectric constant and withstand voltage by tuning the crystallization behavior. J. Mater. Chem. A 9(48), 27660–27671 (2021). https://doi.org/10.1039/D1TA07680A

    Article  CAS  Google Scholar 

  14. X.W. Cao, W.J. Zhao, X.J. Gong et al., Mussel-inspired polydopamine functionalized silicon carbide whisker for PVDF composites with enhanced dielectric performance. Compos. A 148, 106486 (2021). https://doi.org/10.1016/j.compositesa.2021.106486

    Article  CAS  Google Scholar 

  15. J.H. Zhang, Z.X. Li, Y.Q. Liu et al., Enhanced dielectric properties of CCTO ceramics doped by different halogen elements. J. Mater. Sci.: Mater. Electron. 31(11), 8481–8488 (2020). https://doi.org/10.1007/s10854-020-03383-x

    Article  CAS  Google Scholar 

  16. J.H. Zhang, J.C. Zheng, Y.Q. Liu et al., The dielectric properties of CCTO ceramics prepared via different quick quenching methods. Mater. Res. Bull. 115, 49–54 (2019). https://doi.org/10.1016/j.materresbull.2019.03.006

    Article  CAS  Google Scholar 

  17. L. Sun, Z.C. Shi, H.L. Wang et al., Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide-BaTiO3/P(VDF-HFP) composites. J. Mater. Chem. A 8(11), 5750–5757 (2020). https://doi.org/10.1039/D0TA00903B

    Article  CAS  Google Scholar 

  18. M.A. Subramanian, D. Li, N. Duan et al., High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151(2), 323–325 (2000). https://doi.org/10.1006/jssc.2000.8703

    Article  CAS  Google Scholar 

  19. J.H. Jiang, J.P. Li, J. Qian et al., Benzoxazole-polymer@CCTO hybrid nanoparticles prepared via RAFT polymerization: toward poly (p-phenylene benzobisoxazole) nanocomposites with enhanced high-temperature dielectric properties. J. Mater. Chem. A 9(46), 26010–26018 (2021). https://doi.org/10.1039/D1TA08604A

    Article  CAS  Google Scholar 

  20. H. Wu, Y.M. Zhong, Y.X. Tang et al., Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv. Compos. Hybrid. Mater. 5(1), 419–430 (2022). https://doi.org/10.1007/s42114-021-00378-y

    Article  CAS  Google Scholar 

  21. W.Q. Wang, G.G. Ren, M. Zhou et al., Preparation and characterization of CCTO/PDMS dielectric elastomers with high dielectric constant and low dielectric loss. Polymers 13(7), 1075 (2021). https://doi.org/10.3390/polym13071075

    Article  CAS  Google Scholar 

  22. S. Kaur, D.P. Singh, On the structural, dielectric and energy storage behaviour of PVDF-CaCu3Ti4O12 nanocomposite films. Mater. Chem. Phys. 239, 122301 (2020). https://doi.org/10.1016/j.matchemphys.2019.122301

    Article  CAS  Google Scholar 

  23. F. Liang, Y.F. Zhao, X.Z. Chen et al., Dielectric properties of polytetrafluoroethylene/CaCu3Ti4O12 composites. J. Wuhan Univ. Technol. Mater. Sci. Ed. 34(1), 189–194 (2019). https://doi.org/10.1007/s11595-019-2034-x

    Article  CAS  Google Scholar 

  24. L. Variar, M.N. Muralidharan, S.K. Narayanankutty et al., High dielectric constant, flexible and easy-processable calcium copper titanate/thermoplastic polyurethane (CCTO/TPU) composites through simple casting method. J. Mater. Sci.: Mater. Electron. 32(5), 5908–5919 (2021). https://doi.org/10.1007/s10854-021-05311-z

    Article  CAS  Google Scholar 

  25. Y.J. Wang, P.F. He, F.Y. Li, Graphene-improved dielectric property of CCTO/PVDF composite film. Ferroelectrics 540(1), 154–161 (2019). https://doi.org/10.1080/00150193.2019.1611108

    Article  CAS  Google Scholar 

  26. S.H. Liu, J.W. Zhai, Improving the dielectric constant and energy density of poly (vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone. J. Mater. Chem. A 3(4), 1511–1517 (2015). https://doi.org/10.1039/C4TA04455J

    Article  CAS  Google Scholar 

  27. N. Guo, S.A. DiBenedetto, P. Tewari et al., Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide-polyolefin nanocomposites: experiment and theory. Chem. Mater. 22(4), 1567–1578 (2010). https://doi.org/10.1021/cm902852h

    Article  CAS  Google Scholar 

  28. B. Xie, Q. Wang, Q. Zhang et al., High energy storage performance of PMMA nanocomposites utilizing hierarchically structured nanowires based on interface engineering. ACS Appl. Mater. Interfaces 13(23), 27382–27391 (2021). https://doi.org/10.1021/acsami.1c03835

    Article  CAS  Google Scholar 

  29. H.X. Tang, Y.R. Lin, H.A. Sodano, Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors. Adv. Energy Mater. 3(4), 451–456 (2013). https://doi.org/10.1002/aenm.201200808

    Article  CAS  Google Scholar 

  30. P.H. Hu, Y. Shen, Y.H. Guan et al., Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv. Funct. Mater. 24(21), 3172–3178 (2014). https://doi.org/10.1002/adfm.201303684

    Article  CAS  Google Scholar 

  31. Y. Song, Y. Shen, H.Y. Liu et al., Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J. Mater. Chem. 22(32), 16491–16498 (2012). https://doi.org/10.1039/C2JM32579A

    Article  CAS  Google Scholar 

  32. G.Y. Wang, X.Y. Huang, P.K. Jiang, Bio-inspired fluoro-polydopamine meets barium titanate nanowires: a perfect combination to enhance energy storage capability of polymer nanocomposites. ACS Appl. Mater. Interfaces 9(8), 7547–7555 (2017). https://doi.org/10.1021/acsami.6b14454

    Article  CAS  Google Scholar 

  33. Y.P. Liu, R.L. Han, L.Y. Li et al., Tuning of highly dielectric calcium copper titanate nanowires to enhance the output performance of a triboelectric nanogenerator. ACS Appl. Electron. Mater. 2(6), 1709–1715 (2020). https://doi.org/10.1021/acsaelm.0c00249

    Article  CAS  Google Scholar 

  34. R. Guo, H. Luo, M.Y. Yan et al., Significantly enhanced breakdown strength and energy density in sandwich-structured nanocomposites with low-level BaTiO3 nanowires. Nano Energy 79, 105412 (2021). https://doi.org/10.1016/j.nanoen.2020.105412

    Article  CAS  Google Scholar 

  35. J.P. Li, J.H. Jiang, Q.L. Cheng et al., Construction of a flexible 1D core-shell Al2O3@NaNbO3 nanowire/poly (p-phenylene benzobisoxazole) nanocomposite with stable and enhanced dielectric properties in an ultra-wide temperature range. J. Mater. Chem. C 10(2), 716–725 (2022). https://doi.org/10.1039/D1TC05139C

    Article  CAS  Google Scholar 

  36. Y. Zhang, C.H. Zhang, Y. Feng et al., Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano energy 56, 138–150 (2019). https://doi.org/10.1016/j.nanoen.2018.11.044

    Article  CAS  Google Scholar 

  37. Y.Y. Li, P.F. Liang, X.L. Chao et al., Preparation of CaCu3Ti4O12 ceramics with low dielectric loss and giant dielectric constant by the sol-gel technique. Ceram. Int. 39(7), 7879–7889 (2013). https://doi.org/10.1016/j.ceramint.2013.03.049

    Article  CAS  Google Scholar 

  38. P.Y. Raval, P.R. Pansara, N.H. Vasoya et al., Positron annihilation spectroscopic investigation of high energy ball-milling engendered defects in CaCu3Ti4O12. Ceram. Int. 44(13), 15887–15895 (2018). https://doi.org/10.1016/j.ceramint.2018.06.004

    Article  CAS  Google Scholar 

  39. H.X. Tang, Z. Zhou, C.C. Bowland et al., Synthesis of calcium copper titanate (CaCu3Ti4O12) nanowires with insulating SiO2 barrier for low loss high dielectric constant nanocomposites. Nano Energy. 17, 302–307 (2015). https://doi.org/10.1016/j.nanoen.2015.09.002

    Article  CAS  Google Scholar 

  40. Z. Zhou, H.A. Sodano, Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites. ACS Appl. Mater. Interfaces 6(8), 5450–5455 (2014). https://doi.org/10.1021/am405038r

    Article  CAS  Google Scholar 

  41. Y.F. Sheng, X.H. Zhang, H.J. Ye et al., Improved energy density in core-shell poly (dopamine) coated barium titanate/poly (fluorovinylidene-co-trifluoroethylene) nanocomposite with interfacial polarization. Colloids Surf. A 585, 124091 (2020). https://doi.org/10.1016/j.colsurfa.2019.124091

    Article  CAS  Google Scholar 

  42. J.J. Wang, Q.J. Deng, Y.Y. He et al., Fabrications and dielectric performances of novel composites: calcium copper titanate/polyvinylidene fluoride. Curr. Appl. Phys 39, 25–29 (2022). https://doi.org/10.1016/j.cap.2022.04.001

    Article  CAS  Google Scholar 

  43. X.N. Wang, The Investigation on the Preperation of Calcium Copper Titanate (CaCu3Ti4O12) Fibers and Organic Composite Films (University of electronic science and technology china, 2016). (in Chinese)

  44. Z.Z. Wang, Z.P. Feng, H.S. Tang et al., Effects of nanofibers orientation and aspect ratio on dielectric properties of nanocomposites: a phase-field simulation. ACS Appl. Mater. Interfaces 14(37), 42513–42521 (2022). https://doi.org/10.1021/acsami.2c12473

    Article  CAS  Google Scholar 

  45. D. Zhao, L. Yuan, G.Z. Liang et al., Orientating carbon nanotube bundles and barium titanate nanofibers in tri-layer structure to develop high energy density epoxy resin composites with greatly improved dielectric constant and breakdown strength. Compos. B 173, 107030 (2019). https://doi.org/10.1016/j.compositesb.2019.107030

    Article  CAS  Google Scholar 

  46. J.Y. Yang, Preparation and Properties of High Performance Polyarylene Ether Nitrile-based Dielectric Composites (Chongqing University of Technology, 2020). (in Chinese)

  47. T. Yang, L. Liu, X.L. Li et al., High performance silicate/silicone elastomer dielectric composites. Polymer 240, 124470 (2021). https://doi.org/10.1016/j.polymer.2021.124470

    Article  CAS  Google Scholar 

  48. Z.M. Dang, T. Zhou, S.H. Yao et al., Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 21(20), 2077–2082 (2009). https://doi.org/10.1002/adma.200803427

    Article  CAS  Google Scholar 

  49. C. Yang, H.S. Song, D.B. Liu, Effect of coupling agents on the dielectric properties of CaCu3Ti4O12/PVDF composites. Compos. B 50, 180–186 (2013). https://doi.org/10.1016/j.compositesb.2013.02.006

    Article  CAS  Google Scholar 

  50. L. Tu, Y. You, C.Y. Liu et al., Enhanced dielectric and energy storage properties of polyarylene ether nitrile composites incorporated with barium titanate nanowires. Ceram. Int. 45(17), 22841–22848 (2019). https://doi.org/10.1016/j.ceramint.2019.07.326

    Article  CAS  Google Scholar 

  51. D. Zhang, X.F. Zhou, J. Roscow, K.C. Zhou et al., Significantly enhanced energy storage density by modulating the aspect ratio of BaTiO3 nanofibers. Sci. Rep. 7(1), 1–11 (2017). https://doi.org/10.1038/srep45179

    Article  CAS  Google Scholar 

  52. Z.M. Dang, J.K. Yuan, J.W. Zha et al., Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater. Sci. 57(4), 660–723 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.001

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Shanghai Science and Technology Commission Capacity Building plan project for local institutions (No. 21010500500) and the National Foreign Experts Program of the Ministry of Science and Technology (G2022013070L).

Author information

Authors and Affiliations

Authors

Contributions

MZ contributed to writing, reviewing, and editing of the manuscript. GL contributed to writing of the original draft. HaX contributed to writing, reviewing, and editing of the manuscript and supervision. HuX contributed to resources and supervision. YL contributed to data curation.

Corresponding author

Correspondence to Haiping Xu.

Ethics declarations

Competing interests

There are no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Li, G., Xu, H. et al. Controllable preparation of CaCu3Ti4O12 nanowires and its strengthening effect on high dielectric polymer composites. J Mater Sci: Mater Electron 34, 226 (2023). https://doi.org/10.1007/s10854-022-09417-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09417-w

Navigation