Skip to main content
Log in

Impact of carrier gas pressures in the formation of (103) oriented In2S3 nanocrystalline thin films by Nebulized Spray Pyrolysis method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Indium sulphide (In2S3) thin films were successfully deposited on glass substrates with different carrier gas pressures from 0.6 to 1.2 kg/cm2 at an optimized substrate temperature of 300 °C using a Nebulized Spray Pyrolysis (NSP) method. For structural, optical, surface morphological and electrical analysis of as-deposited films were subjected to X-ray diffraction (XRD), UV–vis spectrophotometer, Scanning Electron Microscopy (SEM) and Hall effect measurement. According to X-ray diffraction (XRD) studies, the produced films are nanocrystalline with the (103) plane as the preferred orientation and a tetragonal structure. The crystallite sizes vary between 21.25 and 42.41 nm. According to optical measurements, the assessed energy band of the layers varied between 2.71 and 2.78 eV. The maximum dielectric constant was obtained for the film deposited at 1.0 kg/cm2 of carrier gas pressure. According to SEM analysis, the as-deposited films are uniform, homogeneous and free of crystal defects and voids. Carrier gas pressure has a substantial impact on the structural, optical, electrical and morphological features of deposited In2S3 thin films according to the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Manuscript data will be available on request.

References

  1. C. Tan, H. Zhang, Nat. Commun. 6, 7873 (2015)

    Article  CAS  Google Scholar 

  2. Y. Dou, L. Zhang, X. Xu, Z. Sun, T. Liao, S.X. Dou, Chem. Soc. Rev. 46, 7338–7373 (2017)

    Article  CAS  Google Scholar 

  3. D.L. Duong, S.J. Yun, Y.H. Lee, ACS Nano 11, 11803–11830 (2017)

    Article  CAS  Google Scholar 

  4. S. Ithurria, B. Dubertret, J. Am. Chem. Soc. 130, 16504–16505 (2008)

    Article  CAS  Google Scholar 

  5. G. Mohan Kumar, F. Xiao, P. Ilanchezhiyan, S. Yuldashev, A.M. Kumar, H.D. Cho, T.W. Kang, Appl. Surf. Sci. 455, 446–454 (2018)

    Article  CAS  Google Scholar 

  6. A.M.A. Haleem, S. Mutsumi, I. Masaya, Mater. Sci. Appl. 3, 802 (2012)

    CAS  Google Scholar 

  7. M. Springford, Proc. Phys. Soc. 82, 1020–1028 (1963)

    Article  CAS  Google Scholar 

  8. J.J. Lee, J.D. Lee, B.Y. Ahn, K.H. Kim, J. Kor. Phys. Soc. 53, 3255–3261 (2008)

    Article  CAS  Google Scholar 

  9. M.F. Cansizoglu, R. Engelken, H.W. Seo, T. Karabacak, ACS Nano 4, 733–740 (2010)

    Article  CAS  Google Scholar 

  10. M.A. Mughal, M.J. Newell, J. Vangilder, S. Thapa, K. Wood, R. Engelken, B.R. Carroll, J.B. Johnson, J. Electrochem. Soc. 162, 1638–1642 (2015)

    Article  Google Scholar 

  11. S. Yu, L. Shu, Y. Qian, Y. Xie, J. Yang, L. Yang, Mater. Res. Bull. 33, 717 (1998)

    Article  CAS  Google Scholar 

  12. E. Dalas, L. Kobotiatis, J. Mater. Sci. 28, 6595 (1993)

    Article  CAS  Google Scholar 

  13. K. Hara, K. Saya, H. Araskawa, Sol. Energy Mater. Sol. Cells. 62, 441 (2000)

    Article  CAS  Google Scholar 

  14. T.T. John, S. Bini, Y. Kashiwaba et al., Semicond Sci Technol. 18(6), 491–500 (2003)

    Article  CAS  Google Scholar 

  15. W. Lee, S. Baek, R.S. Mane et al., Curr Appl Phys. 9(1), S62–S64 (2009)

    Article  Google Scholar 

  16. E.B. Yousfi, B. Weinberger, F. Donsanti, P. Cowache, D. Lincot, Thin Solid Films 387(1–2), 29–32 (2001)

    Article  CAS  Google Scholar 

  17. T. Asikainen, M. Ritala, M. Leskela, Appl. Surf. Sci. 82–83, 122–125 (1994)

    Article  Google Scholar 

  18. A.M.A. Haleem, M. Ichimura, Thin Solid Films 516(21), 7783–7789 (2008)

    Article  CAS  Google Scholar 

  19. N.A. Allsop, A. Schönmann, H.J. Muffler, M. Bär, M.C. Lux-Steiner, C.H. Fischer, Prog Photovolt 13(7), 607–616 (2005)

    Article  CAS  Google Scholar 

  20. M. Lajnef, H. Ezzaouia, Open Phys. J. 2, 23–26 (2009)

    CAS  Google Scholar 

  21. P.O. Brien, D.J. Otway, J.R. Walsh, Thin Solid Films 315(1–2), 57–61 (1998)

    Article  Google Scholar 

  22. D. Abou-Ras, G. Kostorz, A. Strohm, H.-W. Schock, A.N. Tiwari, J. Appl. Phys. 98, 12 (2005)

    Article  Google Scholar 

  23. D. Hariskos, S. Spiering, M. Powalla, Thin Solid Films 480, 99–109 (2005)

    Article  Google Scholar 

  24. M. Rusu, T. Glatzel, C.A. Kaufmann, A. Neisser, S. Siebentritt, S. Sadewasser, T. Schedel-Niedrig, M.C. Lux- Steiner, Mater Res. Soc. Symp. Proc. 865, 449–456 (2005)

    Article  CAS  Google Scholar 

  25. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla, Phys. Status Solidi RRL 9, 28–31 (2015)

    Article  CAS  Google Scholar 

  26. J. Raj Mohamed, C. Sanjeeviraja, L. Amalraj, J. Mater. Sci.: Mater. Electron 27(5), 4437–4446 (2016)

    CAS  Google Scholar 

  27. J. Raj Mohamed, L. Amalraj, J. Asian Ceram. Soc 4(3), 357–366 (2016)

    Article  Google Scholar 

  28. A. Chougnet, C. Heitz, E. Sondergard, P.A. Albouy, M. Klotz, Thin Solid Films 495, 40 (2006)

    Article  CAS  Google Scholar 

  29. K.L. Chopra, Thin film phenomena (McGraw-Hill, New York, 1969)

    Google Scholar 

  30. C. Barret, T.B. Massalaski, Structure of metals (Pergamon, Oxford, 1980), p.204

    Google Scholar 

  31. H.R. Moutinho, F.S. Hasoon, F. Abulfotuh, L.L. Kazmerski, J. Vac. Sci. Technol.A 13, 2877 (1995)

    Article  CAS  Google Scholar 

  32. N. Revathi, P. Prathap, K.T.R. Reddy, Solid State Sci. 11, 1288–1296 (2009)

    Article  CAS  Google Scholar 

  33. A. Khorsand Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251–256 (2011)

    Article  CAS  Google Scholar 

  34. P. Rao, S. Kumar, Thin Solid Films 524, 93–99 (2012)

    Article  CAS  Google Scholar 

  35. K. Rrichelt, X. Jiang, Thin Solid Films 191, 91 (1990)

    Article  Google Scholar 

  36. A. Purohit, S. Chander, S.P. Nehra, M.S. Dhaka, Physica E 69, 342–348 (2015)

    Article  CAS  Google Scholar 

  37. Y.C. Liu, S.K. Tung, J.H. Hsieh, J. Cryst. Growth 287, 105 (2006)

    Article  CAS  Google Scholar 

  38. K. Otto, A. Katerski, A. Mere, O. Volobujeva, M. Krunks, Thin Solid Films 519, 3055–3060 (2011)

    Article  CAS  Google Scholar 

  39. S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, K. Natarajan, Sol. Energy Mater. Sol. Cells 82, 187–199 (2004)

    Article  CAS  Google Scholar 

  40. L. Hannachi, N. Bouarissa, Phys. B 404, 3650 (2009)

    Article  CAS  Google Scholar 

  41. A.S. Hassanien, Super Lattices Microstruct. 89, 153–169 (2016)

    Article  CAS  Google Scholar 

  42. A.S. Hassanien, A.A. Akl, J. Alloys Compd. 648, 280–290 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

This research work did not receive any specific Grant from funding agencies in the public commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SSH: Investigation, Methodology, Writing—original draft; LA: Methodology, Conceptualization, Data curation; BB: Writing—review & editing; SSZ: Review & editing; JRM: Investigation, Methodology.

Corresponding author

Correspondence to J. Raj Mohamed.

Ethics declarations

Competing interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, S.S., Balayazhini, B., Amalraj, L. et al. Impact of carrier gas pressures in the formation of (103) oriented In2S3 nanocrystalline thin films by Nebulized Spray Pyrolysis method. J Mater Sci: Mater Electron 34, 49 (2023). https://doi.org/10.1007/s10854-022-09413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09413-0

Navigation