Skip to main content
Log in

A flexible anisotropic magnetoresistance sensor for magnetic field detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Anisotropic magnetoresistance (AMR) sensors with a flexible substrate are presented in this paper. The AMR sensors were fabricated on polyimide (PI) material in a surface micromachining process, and the minimum linewidth of the sensors was reduced to 3 μm by optimization of the process. An orthogonal-arranged Wheatstone bridge structure was proposed to improve the voltage output, and the AMR strips in series–parallel connection were designed to improve the sensitivity. The AMR sensors with Wheatstone bridge show high linearity, sensitivity, and voltage output performance by measurement. A maximum Wheatstone bridge voltage output of about 0.07 mV was achieved for 0.5 V bias in the magnetic field of 100 Gs, and the sensitivity value of about 1.5 Gs−1 was obtained. Moreover, the AMR sensors had good robustness upon mechanical bending, and a maximum bend radius of about 2.3 cm was achieved. The research results demonstrated the feasibility of manufacturing high-performance small-sized AMR sensors on flexible substrates and showed great potential for magnetic field detection in non-planar applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J.T. Yu, L. Sun, Y. Xiao, S.W. Jiang, W.L. Zhang, Electron. Compon. Mater. 38, 6 (2019)

    Google Scholar 

  2. Y.H. Chai, Y.X. Guo, W. Bian, W. Li, T. Yang, M.D. Yi, Q.L. Fan, L.H. Xie, W. Huang, Acta Phys. Sin. 63, 2 (2014). https://doi.org/10.7498/aps.63.027302

    Article  CAS  Google Scholar 

  3. G.Z. Shen, Prog. Nat. Sci. 31, 6 (2021). https://doi.org/10.1016/j.pnsc.2021.10.005

    Article  CAS  Google Scholar 

  4. L. Jogschies, D. Klaas, R. Kruppe, J. Rittinger, P. Taptimthong, A. Wienecke, L. Rissing, M.C. Wurz, Sensors 15, 11 (2015). https://doi.org/10.3390/s151128665

    Article  Google Scholar 

  5. C. Reig, M.D. Cubells-Beltran, D.R. Munoz, Sensors 9, 10 (2009). https://doi.org/10.3390/s91007919

    Article  CAS  Google Scholar 

  6. X. Liu, Z.L. Song, R. Wang, Z.Y. Quan, Adv. Condens. Matter Phys. (2016). https://doi.org/10.1155/2016/8528617

    Article  Google Scholar 

  7. E. Demirci, J. Supercond. Nov. Magn. 33, 12 (2020). https://doi.org/10.1007/s10948-020-05646-4

    Article  CAS  Google Scholar 

  8. N.H. Zheng, X. Wang, Y.H. Zheng, D. Li, Z.Z. Lin, W.F. Zhang, K.J. Jin, G. Yu, Adv. Mater. Interfaces 7, 18 (2020). https://doi.org/10.1002/admi.202000868

    Article  CAS  Google Scholar 

  9. B. Jana, K. Ghosh, K. Rudrapal, P. Gaur, P.K. Shihabudeen, A.R. Chaudhuri, Front. Phys. (2022). https://doi.org/10.3389/fphy.2021.822005

    Article  Google Scholar 

  10. J. Gaspar, H. Fonseca, E. Paz, M. Martins, J. Valadeiro, S. Cardoso, R. Ferreira, P.P. Freitas, IEEE Trans. Magn. 53, 4 (2017). https://doi.org/10.1109/TMAG.2016.2623669

    Article  Google Scholar 

  11. S. Ota, A. Ando, D. Chiba, Nat. Electron. 1, 2 (2018). https://doi.org/10.1038/s41928-018-0022-3

    Article  Google Scholar 

  12. E.S.O. Mata, G.S.C. Bermudez, M. Ha, T. Kosub, Y. Zabila, J. Fassbender, D. Makarov, Appl. Phys. A 127, 4 (2021). https://doi.org/10.1007/s00339-021-04411-1

    Article  CAS  Google Scholar 

  13. A. Persson, R.S. Bejhed, H. Nguyen, K. Gunnarsson, B.T. Dalslet, F.W. Osterberg, M.F. Hansen, P. Svedlindh, Sens. Actuator A 171, 2 (2011). https://doi.org/10.1016/j.sna.2011.09.014

    Article  CAS  Google Scholar 

  14. C.Y. Wang, W. Su, Z.Q. Hu, J.T. Pu, M.M. Guan, B. Peng, L. Li, W. Ren, Z.Y. Zhou, Z.D. Jiang, M. Liu, IEEE Trans. Magn. 54, 11 (2018). https://doi.org/10.1109/TMAG.2018.2846758

    Article  Google Scholar 

  15. L.J. Wang, J. Univ. Sci. Technol. Beijing 28, 8 (2006)

    Google Scholar 

  16. A. Bedoya-Pinto, M. Donolato, M. Gobbi, L.E. Hueso, P. Vavassori, Appl. Phys. Lett. 104, 6 (2014). https://doi.org/10.1063/1.4865201

    Article  CAS  Google Scholar 

  17. Z.G. Wang, X.J. Wang, M.H. Li, Y. Gao, Z.Q. Hu, T.X. Nan, X.F. Liang, H.H. Chen, J. Yang, S. Cash, N.X. Sun, Adv. Mater. 28, 42 (2016). https://doi.org/10.1002/adma.201602910

    Article  CAS  Google Scholar 

  18. C.H. Lai, H. Matsuyama, R.L. White, T.C. Anthony, IEEE Trans. Magn. 31, 6 (1995). https://doi.org/10.1109/20.490068

    Article  Google Scholar 

  19. Y. Saito, K. Inomata, K. Yusu, A. Goto, H. Yasuoka, Phys. Rev. B 52, 9 (1995). https://doi.org/10.1103/PhysRevB.52.6500

    Article  Google Scholar 

  20. W. Thomson, Proc. R. Soc. Lond. (1876). https://doi.org/10.1098/rstl.1876.0026

    Article  Google Scholar 

  21. J. Neamtu, M. Volmer, A. Coraci, IEEE (1998). https://doi.org/10.1109/SMICND.1998.732348

    Article  Google Scholar 

  22. J. Mouchot, P. Gerard, B. Rodmacq, IEEE Trans. Magn. 29, 6 (1993). https://doi.org/10.1109/20.280928

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jiangsu Provincial Key Research and Development Program (BE2020006-1), the Natural Science Foundation of Jiangsu Province (BK20171355), and the Fundamental Research Funds for the Central Universities.

Funding

Funding was provided by Jiangsu Provincial Key Research and Development Program (BE2020006-1), Natural Science Research of Jiangsu Higher Education Institutions of China (BK20171355) and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JC and ZZ. The first draft of the manuscript was written by JC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jie Chen.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, Z. A flexible anisotropic magnetoresistance sensor for magnetic field detection. J Mater Sci: Mater Electron 34, 73 (2023). https://doi.org/10.1007/s10854-022-09400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09400-5

Navigation