Skip to main content
Log in

Comparative study of miracle leaf extracts reduced graphene oxide (m-rGO) and chemically synthesized graphene oxide (GO) as methanol gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel, green, bio-inspired synthesis of miracle leaf extracts reduced graphene oxide (m-rGO) nanosheets was explored. Here, graphene oxide (GO) was prepared using modified Hummers method from graphite powder and then reduced by miracle leaf extracts to produce m-rGO. The prepared m-rGO and chemically prepared GO was characterized by scanning electron microscopy (SEM), powder x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman Spectroscopy and UV–Visible Spectroscopy. The XRD, FTIR, and Raman confirm the oxidation and reduction process. SEM and TEM images showed wrinkled sheet structure for green-synthesized reduced graphene oxides. The synthesized m-rGO products were investigated as a methanol gas sensor at ambient temperature using laboratory-made sensor setup. The sensing characteristics were monitored by measuring the change in electrical resistivity on exposure to methanol vapor at different concentrations. It is observed that the electrical response and % sensitivity of m-rGO toward methanol vapor is found to be a highly sensitive (254.7) than that of GO (27.7). The basic mechanism of the interaction between methanol and GO is believed to be hydrogen bonding and π–π interaction. To the best of our knowledge, no study has been conducted on miracle leaf extracts reduced graphene oxide (m-rGO) using this environment friendly green method for application of methanol gas sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings of this study are available within the article.

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D.E. Jiang, Y. Zhang, S.V. Debones, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). https://doi.org/10.1126/science.1158877

    Article  CAS  Google Scholar 

  3. M. Coroş, F. Pogăcean, L. Măgeruşan, C. Socaci, S. Pruneanu, Front Mater. Sci. 13, 23–32 (2019). https://doi.org/10.1007/s11706-019-0452-5

    Article  Google Scholar 

  4. P. Tambe, Mater. Today Proc 49, 1294–1297 (2022). https://doi.org/10.1016/j.matpr.2021.06.381

    Article  CAS  Google Scholar 

  5. C. Kavitha, Mater. Today Proc. 49, 811–816 (2022). https://doi.org/10.1016/j.matpr.2021.05.343

    Article  CAS  Google Scholar 

  6. C.I. Justino, A.R. Gomes, A.C. Freitas, A.C. Duarte, T.A. Rocha-Santos, TrAC Trend. Ana. Chem. 91, 53–66 (2017). https://doi.org/10.1016/j.trac.2017.04.003

    Article  CAS  Google Scholar 

  7. S. Sikiru, O.T. Lekan, Y.K. Sanusi, A.A. Adewale, A.A. OJCurr, Nanosci. 18, 336–346 (2022). https://doi.org/10.2174/1573413717666210702095201

    Article  CAS  Google Scholar 

  8. Y. Li, W. Gao, L. Ci, C. Wang, P.M. Ajayan, Carbon 48, 1124–1130 (2010). https://doi.org/10.1016/j.carbon.2009.11.034

    Article  CAS  Google Scholar 

  9. W. Liu, G. Speranza, ACS Omega 6, 6195–6205 (2021). https://doi.org/10.1021/acsomega.0c05578

    Article  CAS  Google Scholar 

  10. S. Konwer, L.J. Barthakur, S.K. Dolui, J. Mater. Sci. Mater. Elect. 23, 837–845 (2012). https://doi.org/10.1007/s10854-011-0503-x

    Article  CAS  Google Scholar 

  11. R. Munoz, C. Gómez-Aleixandre, Chem. Vap. Depos. 19, 297–322 (2013). https://doi.org/10.1002/cvde.201300051

    Article  CAS  Google Scholar 

  12. J.L. Qi, W.T. Zheng, X.H. Zheng, X. Wang, H.W. Tian, Appl. Surf. Sci. 257, 6531–6534 (2011). https://doi.org/10.1016/j.apsusc.2011.02.069

    Article  CAS  Google Scholar 

  13. Q. Huang, J.J. Kim, G. Ali, S.O. Cho, Adv. Mater. 25, 1144–1148 (2013). https://doi.org/10.1002/adma.201202746

    Article  CAS  Google Scholar 

  14. C.K. Chua, M. Pumera, Chem. Soc. Rev. 43, 291–312 (2014). https://doi.org/10.1039/C3CS60303B

    Article  CAS  Google Scholar 

  15. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  16. R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, M.A. Atieh, Ceram. Int. 45, 14439–14448 (2019). https://doi.org/10.1016/j.ceramint.2019.04.165

    Article  CAS  Google Scholar 

  17. A. Lerf, H. He, T. Riedl, M. Forster, J. Klinowski, Sol. St. Ion. 101, 857–862 (1997). https://doi.org/10.1016/S0167-2738(97)00319-6

    Article  Google Scholar 

  18. S. Pei, H.M. Cheng, Carbon 50, 3210–3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  19. J. Zhang, H.Y. Cao, J.Q. Wang, G.D. Wu, L. Wang, Front. Cell Dev. Biol. 9, 616888 (2021). https://doi.org/10.3389/fcell.2021.616888

    Article  Google Scholar 

  20. A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Nano. Mater. Sci. 1, 31–47 (2019). https://doi.org/10.1016/j.nanoms.2019.02.004

    Article  Google Scholar 

  21. J.I. Paredes, S. Villar-Rodil, M.J. Fernández-Merino, L. Guardia, A. Martínez-Alonso, J.M.D. Tascon, J. Mater. Chem. 21, 298–306 (2011). https://doi.org/10.1039/C0JM01717E

    Article  CAS  Google Scholar 

  22. B.S. Dash, G. Jose, Y.J. Lu, J.P. Chen, Int. J. Mol. Sci. 22, 2989 (2021). https://doi.org/10.3390/ijms22062989

    Article  CAS  Google Scholar 

  23. A. Furst, R.C. Berlo, S. Hooton, Chem. Rev. 65, 51–68 (1965). https://doi.org/10.1021/cr60233a002

    Article  CAS  Google Scholar 

  24. H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Adv. Funct. Mater. 19, 1987–1992 (2009). https://doi.org/10.1002/adfm.200900167

    Article  CAS  Google Scholar 

  25. A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Lithiumaluminum hydride as reducing agent for chemically reduced graphene oxides. Chem. Mater. 24, 2292–2298 (2012). https://doi.org/10.1021/cm300382b

    Article  CAS  Google Scholar 

  26. C.H.A. Wong, M. Pumera, J. Mater Chem. C. 2, 856–863 (2014). https://doi.org/10.1039/C3TC31688B

    Article  CAS  Google Scholar 

  27. S. Thakur, N. Karak, Carbon 50, 5331–5339 (2012). https://doi.org/10.1016/j.carbon.2012.07.023

    Article  CAS  Google Scholar 

  28. D. Chen, L. Li, L. Guo, Nanotechnology 22, 325601 (2011). https://doi.org/10.1088/0957

    Article  Google Scholar 

  29. G. Wang, F. Qian, C.W. Saltikov, Y. Jiao, Y. Li, Nano Res. 4, 563–570 (2011). https://doi.org/10.1007/s12274-011-0112

    Article  CAS  Google Scholar 

  30. K. Muthoosamy, R.G. Bai, I.B. Abubakar, S.M. Sudheer, H.N. Lim, H.S. Loh, N.M. Huang, C.H. Chia, S. Manickam, Int. J. Nanomedicine 10, 1505 (2015). https://doi.org/10.2147/IJN.S75213

    Article  CAS  Google Scholar 

  31. Y. Wang, Z. Shi, J. Yin, A.C.S. Appl, Mater. Interfaces 3, 1127–1133 (2011). https://doi.org/10.1021/am1012613

    Article  CAS  Google Scholar 

  32. M. Khan, A.H. Al-Marri, M. Khan, M.R. Shaik, N. Mohri, S.F. Adil, M. Kuniyil, H.Z. Alkhathlan, A. Al-Warthan, W. Tremel, M.N. Tahir, Nanoscale Res. Lett. 10, 1–9 (2015). https://doi.org/10.1186/s11671-015-0987-z

    Article  CAS  Google Scholar 

  33. B. Kartick, S.K. Srivastava, J. Nanosci. Nanotechnol. 13, 4320–4324 (2013). https://doi.org/10.1166/jnn.2013.7461

    Article  CAS  Google Scholar 

  34. B. Haghighi, M.A. Tabrizi, RSC Adv. 3, 13365–13371 (2013). https://doi.org/10.1039/C3RA40856F

    Article  CAS  Google Scholar 

  35. F. Tavakoli, M. Salavati-NiaAQAsari, F. Mohandes, Mater. Res. Bull. 63, 51–57 (2015). https://doi.org/10.1016/j.materresbull.2014.11.045

    Article  CAS  Google Scholar 

  36. C. Li, Z. Zhuang, X. Jin, Z. Chen, Appl. Surf. Sci. 422, 469–474 (2015). https://doi.org/10.1016/j.apsusc.2017.06.032

    Article  CAS  Google Scholar 

  37. M. Khan, A.H. Al-Marri, M. Khan, N. Mohri, S.F. Adil, A. Al-Warthan, M.R.H. Siddiqui, H.Z. Alkhathlan, R. Berger, W. Tremel, M.N. Tahir, RSC Adv. 4, 24119–24125 (2014). https://doi.org/10.1039/C4RA01296H

    Article  CAS  Google Scholar 

  38. A. QuaziMajaz, A.U. Tatiya, M. Khurshid, S. Nazim, S. Siraj, Int. J. Res. Ayurveda Pharm. 2, 1478–1482 (2011)

    CAS  Google Scholar 

  39. A. Bogucka-Kocka, C. Zidorn, M. Kasprzycka, G. Szymczak, K. Szewczyk, Saudi J. Biol. Sci. 25, 622–630 (2018). https://doi.org/10.1016/j.sjbs.2016.01.037

    Article  CAS  Google Scholar 

  40. S. Konwer, A.K. Guha, S.K. Dolui, J. Mater. Sci. 48, 1729–1739 (2013). https://doi.org/10.1007/s10853-012-6931-z

    Article  CAS  Google Scholar 

  41. B. Pegu, S. Bordoloi, R. Boruah, S. Konwer, Bull. Mater. Sci. 44, 1–9 (2021). https://doi.org/10.1007/s12034-021-02540-0

    Article  CAS  Google Scholar 

  42. S. Konwer, R. Boruah, S.K. Dolui, J. Electron. Mater. 40, 2248–2255 (2011). https://doi.org/10.1007/s11664-011-1749-z

    Article  CAS  Google Scholar 

  43. N. Sharma, V. Sharma, Y. Jain, M. Kumari, R. Gupta, S.K. Sharma, K. Sachdev, Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. Macromol. Symp. 376, 1700006 (2017). https://doi.org/10.1002/masy.201700006

    Article  CAS  Google Scholar 

  44. T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Chem. Mater. 18, 2740–2749 (2006). https://doi.org/10.1021/cm060258

    Article  Google Scholar 

  45. N.M.S. Hidayah, W.W. Liu, C.W. Lai, N.Z. Noriman, C.S. Khe, U. Hashim, H.C. Lee, AIP Conference Proceedings. AIP Publ LLC 1, 150002 (2017). https://doi.org/10.1063/1.5005764

    Article  CAS  Google Scholar 

  46. N.J. Panicker, P.P. Sahu, J. Mater. Sci. Mater. Electron. 32, 15265–15278 (2021). https://doi.org/10.1007/s10854-021-06077-0

    Article  CAS  Google Scholar 

  47. N. Sharma, R. Vyas, V. Sharma, H. Rahman, S.K. Sharma, K. Sachdev, Appl. Nanosci. 10, 517–528 (2020). https://doi.org/10.1007/s13204-019-01138-7

    Article  CAS  Google Scholar 

  48. J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascon, Langmuir 24, 10560–10564 (2008). https://doi.org/10.1021/la801744a

    Article  CAS  Google Scholar 

  49. K. Phasuksom, W. Prissanaroon-Ouajai, A. Sirivat, RSC Adv. 10, 15206–15220 (2020). https://doi.org/10.1039/D0RA00158A

    Article  CAS  Google Scholar 

  50. S. Aslam, T.H. Bokhari, T. Anwar, U. Khan, A. Nairan, K. Khan, Mater. Lett. 235, 66–70 (2019). https://doi.org/10.1016/j.matlet.2018.09.164

    Article  CAS  Google Scholar 

  51. C.A. Zito, T.M. Perfecto, C.S. Fonseca, D.P. Volanti, New J. Chem. 42, 8638–8645 (2018). https://doi.org/10.1039/C8NJ01061G

    Article  CAS  Google Scholar 

  52. A. Hazra, IEEE Trans. Electron Devices 67, 5111–5118 (2020). https://doi.org/10.1109/TED.2020.3025743

    Article  CAS  Google Scholar 

  53. A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, Nanoscale 5, 5426–5434 (2013). https://doi.org/10.1039/C3NR00747B

    Article  CAS  Google Scholar 

Download references

Funding

The author S. Bordoloi acknowledges Science and Engineering Research Board (SERB), India for providing research grant [No. SR/WOS-A/CS-161/2016].

Author information

Authors and Affiliations

Authors

Contributions

All the authors have significantly contributed in this research work. BP: carried out the synthesis, characterization, and analysis of the compound and wrote the manuscript. SB: assisted in the conceptualization, review, and editing of the manuscript. RB: carried out the characterization part. SK: supervised the entire research work.

Corresponding authors

Correspondence to Shreemoyee Bordoloi or Surajit Konwer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pegu, B., Bordoloi, S., Boruah, R. et al. Comparative study of miracle leaf extracts reduced graphene oxide (m-rGO) and chemically synthesized graphene oxide (GO) as methanol gas sensor. J Mater Sci: Mater Electron 33, 27121–27131 (2022). https://doi.org/10.1007/s10854-022-09375-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09375-3

Navigation