Skip to main content
Log in

The dielectric properties and relaxor behavior of gadolinium oxide modified barium zirconate titanate ceramics for Y5V capacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Gd2O3 modified Ba(Zr0.1Ti0.9)O3 dielectric ceramics were fabricated using the conventional solid state reaction method. The influences of Gd2O3 on their microstructures, dielectric properties and relaxor behaviors were systematically investigated by X-ray diffractometer, scanning electron microscope and LCR measurement system. The results show that the ceramics have a single perovskite structure and there is no obvious secondary phase. The peak splitting of the (200) lattice plane disappears gradually, indicating that the ceramic changes from tetragonal phase to cubic phase at room temperature with increasing Gd2O3 addition. The average grain size of Ba(Zr0.1Ti0.9)O3 ceramics decreases from ~ 20 to ~ 2 μm as the Gd2O3 content increases. The temperature corresponding to the permittivity maximum (Tm) of Ba(Zr0.1Ti0.9)O3 ceramics decreases with increasing Gd2O3 doping content. The dielectric loss at room temperature decreases noticeably with the increase of Gd2O3 content. The frequency dispersion of relative dielectric constant at T < Tm for Ba(Zr0.1Ti0.9)O3 ceramics is enhanced by increasing the Gd2O3 content. With the increase of Gd2O3 content, the Ba(Zr0.1Ti0.9)O3 ceramics turn into relaxors with an enhanced diffusion exponent of ferroelectric-paraelectric phase transition. And the dielectric temperature stability is improved effectively after Gd2O3 modification in BZT ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.C. Ferrarelli, C.C. Tan, D.C. Sinclair, J. Mater. Chem. 21, 6292 (2011)

    Article  CAS  Google Scholar 

  2. H. Gong, X. Wang, S. Zhang, H. Wen, L. Li, J. Eur. Ceram. Soc. 34, 1733 (2014)

    Article  CAS  Google Scholar 

  3. M. Aghayan, A. Khorsand Zak, M. Behdani, A. Manaf Hashim, Ceram. Int. 40, 16141 (2014)

    Article  CAS  Google Scholar 

  4. C. Filipič, Z. Kutnjak, R. Pirc, G. Canu, J. Petzelt, Phys. Rev. B 93, 224105 (2016)

    Article  Google Scholar 

  5. T. Maiti, R. Guo, A.S. Bhalla, Ferroelectrics 425, 4 (2011)

    Article  CAS  Google Scholar 

  6. X.G. Tang, K.-H. Chew, H.L.W. Chan, Acta Mater. 52, 5177 (2004)

    Article  CAS  Google Scholar 

  7. Z. Sun, W. Liu, Q. Li, Z. Tao, Y. Han, Ceram. Int. 47, 2086 (2021)

    Article  CAS  Google Scholar 

  8. J.N.O. Amu-Darko, C. Zhang, S. Hussain, S.L. Otoo, M.F. Agyemang, Trans. Nonferrous Met. Soc. China 32, 1242 (2022)

    Article  CAS  Google Scholar 

  9. J.N.O. Amu-Darko, C. Zhang, S. Hussain, E. Issaka, S.L. Otoo, M.F. Agyemang, E.C. Okoroafor, Mater. Chem. Phys. 287, 126328 (2022)

    Article  CAS  Google Scholar 

  10. X. Chou, J. Zhai, H. Jiang, X. Yao, J. Appl. Phys. 102, 084106 (2007)

    Article  Google Scholar 

  11. T. Badapanda, J. Adv. Ceram. 3, 339 (2014)

    Article  CAS  Google Scholar 

  12. T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, T.P. Sinha, E. Longo, Mater. Chem. Phys. 121, 147 (2010)

    Article  CAS  Google Scholar 

  13. C. Zhang, F. Chen, X. Zhong, Z. Ling, Z. Tang, G. Jian, J. Mater. Sci.: Mater. Electron. 29, 16730 (2018)

    CAS  Google Scholar 

  14. X. Diez-Betriu, J.E. Garcia, C. Ostos, A.U. Boya, D.A. Ochoa, L. Mestres, R. Perez, Mater. Chem. Phys. 125, 493 (2011)

    Article  CAS  Google Scholar 

  15. G.N. Bhargavi, A. Khare, T. Badapanda, M.S. Anwar, Appl. Phys. A 124, 746 (2018)

    Article  CAS  Google Scholar 

  16. G.N. Bhargavi, A. Khare, T. Badapanda, P.K. Ray, N. Brahme, Ceram. Int. 44, 1817 (2018)

    Article  CAS  Google Scholar 

  17. B.S. Reddy, R.M.S. Rao, Appl. Phys. Lett. 91, 022917 (2007)

    Article  Google Scholar 

  18. E. Antonelli, M. Letonturier, J.-C. M’Peko, A.C. Hernandes, J. Eur. Ceram. Soc. 29, 1449 (2009)

    Article  CAS  Google Scholar 

  19. K.M. Batoo, R. Verma, A. Chauhan, R. Kumar, M. Hadi, O.M. Aldossary, Y. Al-Douri, J. Alloys Compd. 883, 160836 (2021)

    Article  CAS  Google Scholar 

  20. S.B. Reddy, K.P. Rao, M.S.R. Rao, J. Alloys Compd. 509, 1266 (2011)

    Article  CAS  Google Scholar 

  21. D.Y. Lu, L. Zhang, X.Y. Sun, Ceram. Int. 39, 6369 (2013)

    Article  CAS  Google Scholar 

  22. Y. Wang, B. Cui, L.L. Zhang, Z.Y. Hu, Y.Y. Wang, Ceram. Int. 40, 1681 (2014)

    Google Scholar 

  23. X.X. Zhan, B. Cui, Y.L. Xing, R. Ma, Y. Xie, Z.G. Chang, F.X. Zhang, Ceram. Int. 38, 389 (2012)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by ZW, XL, YS, YW, WZ, XB, ZG and YC. The first draft of the manuscript was written by ZW and XL. The supervision of the whole work and revision of the manuscript were made by CZ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chen Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Liao, X., Shi, Y. et al. The dielectric properties and relaxor behavior of gadolinium oxide modified barium zirconate titanate ceramics for Y5V capacitor applications. J Mater Sci: Mater Electron 33, 27110–27120 (2022). https://doi.org/10.1007/s10854-022-09373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09373-5

Navigation