Skip to main content
Log in

Structural, optical, and gas sensing properties of CdSe thin films deposited by SILAR method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Today, the rapid change that occurs with the acceleration of research and studies in thin film materials creates new opportunities for the development of new processes, materials, and technologies. In this study, cadmium selenide (CdSe) thin films were deposited on the glass substrate by successive ionic layer adsorption and reaction (SILAR) method with 30, 40, and 50 deposition cycles. Structural, optical, electrical, and gas sensing properties of CdSe thin films were investigated as a function of the deposition cycle directly related to the thickness of samples. The transmission decreased from 13 to 5% from 30 to 50 cycles whereas increasing in absorbance from 0.6 to 1.2. Optical bandgap values were calculated as 1.83, 1.79, and 1.76 eV for 30 cycle, 40 cycle, and 50 cycle, respectively. From Raman analyses, CdSe thin films have two strong modes at 200 cm−1 for all films and 819, 838, and 872 cm−1 for 50CdSe, 40CdSe, and 30CdSe, respectively. CO2 gas detection measurements from 10 to 50 ppm were made for all samples at room temperature. The responses of 10 ppm CO2 gas sensing were calculated as 4%, 5%, and 7% for 30 cycle, 40 cycle, and 50 cycle at room temperature. It was seen that the best results were obtained with the 50 cycle thin film. The effect of deposition cycle was investigated on the structural, morphological, optical, and electrical properties of the films in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

The data and materials that support our published claims stand well with the field standards and journal policies.

Code availability

Not applicable.

References

  1. K.B. Chaudhari, N.M. Gosavi, N.G. Deshpande, S.R. Gosav, J. Scı.-Adv. Mater. Dev. 1, 476–481 (2016)

    Google Scholar 

  2. Himanshu, R. Sharma, S. Chuhadiya, A. Thakur, M.S. Dhaka, Opt. Mater. 126, 112180 (2022)

    Article  CAS  Google Scholar 

  3. Himanshu, G. Chasta, D. Suthar, A. Thakur, M.D. Kannan, M.S. Dhaka, Mater. Res. Bull. 152, 111845 (2022)

    Article  CAS  Google Scholar 

  4. HNi. Rosly, K.S. Rahman, M.N. Harif, C. Doroody, M. Isah, H. Misran, N. Amin, Superlattices Microstruct. 148, 106716 (2020)

    Article  CAS  Google Scholar 

  5. M. Hassen, R. Riahi, F. Laatar, H. Ezzaouia, Surf. Interfaces 18, 100408 (2020)

    Article  CAS  Google Scholar 

  6. I. Karaduman Er, A.O. Çağirtekin, T. Çorlu, M.A. Yildirim, A. Ateş, S. Acar, Bull. Mater. Sci. 42, 32 (2019)

    Article  Google Scholar 

  7. F. Garibay-Martínez, J. Hernandez-Borja, R. Ramírez-Bon, Optik 242, 167284 (2021)

    Article  Google Scholar 

  8. I. Karaduman Er, Russ. J. Appl. Chem. 94(9), 1334–1343 (2021)

    Article  Google Scholar 

  9. I. Karaduman Er, M.A. Yıldırım, H.H. Örkçü, A. Ateş, S. Acar, Appl. Phys. A 127, 230 (2021)

    Article  CAS  Google Scholar 

  10. I. Karaduman Er, T. Çorlu, M.A. Yıldırım, A. Ateş, S. Acar, J. Polytech. 23(4), 1189–1196 (2020)

    Google Scholar 

  11. Y. Akaltun, M.A. Yıldırım, A. Ateş, M. Yıldırım, Opt. Commun. 284, 2307–2311 (2011)

    Article  CAS  Google Scholar 

  12. S.S. Kale, C.D. Lokhande, Mater. Chem. Phys. 62, 103–108 (2000)

    Article  CAS  Google Scholar 

  13. S.R. Vıshwakarm, A. Kumar, S. Das, A.K. Verma, R.S.N. Trıpathı, Chalcogenide Lett. 10(7), 239–246 (2013)

    Google Scholar 

  14. A. Purohit, S. Chander, S. Pal Nehra, M. Singh Dhaka, Acta Metall. Sin. (Engl. Lett.) 28(10), 1299–1304 (2015)

    Article  CAS  Google Scholar 

  15. M.A. Zubair, M.T. Chowdhury, M.S. Bashar, M.A. Sami, M.F. Islam, AIP Adv. 9, 045123 (2019)

    Article  Google Scholar 

  16. J.A. Rivera-Marquez, J.I. Contreras-Rascón, R. Lozada-Morales, J. Díaz-Reyes, R. Castillo-Palomera, M.E. Alvarez, M. Meléndez-Lira, O. Zelaya-Angel, Mater. Sci. Eng. B 260, 114621 (2020)

    Article  CAS  Google Scholar 

  17. D. Nath, R. Das, Appl. Surf. Sci. 509, 144708 (2020)

    Article  CAS  Google Scholar 

  18. S. Wageh, Physica E 39, 8–14 (2007)

    Article  CAS  Google Scholar 

  19. R. Cusco, V. Consonni, E. Bellet-Amalric, R. Andre, L. Artus, Phys. Status Solidi 11(5), 1700006 (2017)

    Google Scholar 

  20. S. Ahmad, M. Shahid Khan, K. Asokan, M. Zulfequar, Optik 126, 3501–3505 (2015)

    Article  CAS  Google Scholar 

  21. A.I. Abdel-Salam, M.M. Awad, T.S. Soliman, A. Khalid, J. Alloys Compd. 898, 162946 (2022)

    Article  CAS  Google Scholar 

  22. A. Javed, N. Khan, S. Bashir, M. Ahmad, M. Bashir, Mater. Chem. Phys. 246, 122831 (2020)

    Article  CAS  Google Scholar 

  23. G.G. Welegergs, H.G. Gebretnisae, M.G. Tsegay, Z.Y. Nuru, S. Dube, M. Maaza, Infrared Phys. Technol. 113, 103619 (2021)

    Article  CAS  Google Scholar 

  24. P. Matheswaran, B. Gokul, K.M. Abhirami, R. Sathyamoorthy, Mater. Sci. Semicond. Process 15, 486–491 (2012)

    Article  CAS  Google Scholar 

  25. P.A. Nwofe, K.T. Ramakrishna Reddy, J.K. Tan, I. Forbes, R.W. Miles, Phys. Procedia 25, 150–157 (2012)

    Article  CAS  Google Scholar 

  26. S. Tekin, A. Karatay, Y. Osman Donar, S. Bilge, E. Akhuseyin Yildiz, A. Sınağ, A. Elmali, Opt. Mater. 113, 110849 (2021)

    Article  CAS  Google Scholar 

  27. M. Piryaei, E. Gholami Hatam, N. Ghobadi, J. Mater. Sci.: Mater. Electron. 28, 2550–2556 (2017)

    CAS  Google Scholar 

  28. S.L. Patel, Himanshu, S. Chander, A. Purohit, M.D. Kannan, M.S. Dhaka, Opt. Mater. 89, 42–47 (2019)

    Article  CAS  Google Scholar 

  29. Y. Zhao, Z. Yan, J. Liu, A. Wei, Mater. Sci. Semicond. Process 16, 1592–1598 (2013)

    Article  CAS  Google Scholar 

  30. J.-Y. Li, H.-Y. Lu, X.-H. Zhang, Y.-M. Xing, G. Wang, H.-Y. Guan, X.-L. Wu, Chem. Eng. J. 316, 499–505 (2017)

    Article  CAS  Google Scholar 

  31. K.M.A. Hussain, T. Begum, Z.H. Mahmood, I.M. Syed, S. Ahmed, Int. J. Nanosci. 1(2), 34–38 (2014)

    Google Scholar 

  32. N. Khedmi, M. Ben Rabeh, M. Kanzari, Energy Procedia 44, 61–68 (2014)

    Article  CAS  Google Scholar 

  33. F.P.N. Inbanathan, P. Kumar, K. Dasari, R.S. Katiyar, J. Chen, W.M. Jadwisienczak, Materials 14, 3307 (2021)

    Article  CAS  Google Scholar 

  34. E.M. El-Menyawy, A.A. Azab, Optik 168, 217–227 (2018)

    Article  CAS  Google Scholar 

  35. H. Ilchuk, R. Petrus, A. Kashuba, I. Semkiv, E. Zmiiovska, Mol. Cryst. Liq. 699(1), 1–8 (2020)

    Article  CAS  Google Scholar 

  36. L. Manna, E.C. Scher, A. Paul Alivisatos, J. Am. Chem. Soc 122(51), 12700–12706 (2000)

    Article  CAS  Google Scholar 

  37. İA. Kariper, Ö. Bağlayan, F. Göde, Acta Phys. Pol. A 128, 219–222 (2015)

    Article  Google Scholar 

  38. M.M. Abutalib, M. Shkir, I.S. Yahia, S. AlFaify, A.M. El-Naggar, V. Ganesh, Optik 127, 6601–6609 (2016)

    Article  CAS  Google Scholar 

  39. C. Habiboglu, O. Erken, M. Gunes, O. Yilmaz, H.C. Cevlik, C. Ulutas, C. Gumus, Solid State Commun. 352, 114823 (2022)

    Article  CAS  Google Scholar 

  40. J. Krc, M. Zeman, O. Kluth, F. Smole, M. Topic, Thin Solid Films 426, 296–304 (2003)

    Article  CAS  Google Scholar 

  41. S.J. Ikhmayies, R.N. Ahmad-Bitar, J. Mater. Res. Technol. 2(3), 221–227 (2013)

    Article  CAS  Google Scholar 

  42. P. Bindu, S. Thomas, Acta Phys. Pol. A 131, 6 (2017)

    Article  Google Scholar 

  43. S. Velumanı, X. Mathew, P.J. Sebastıan, Sa.K. Narayandass, D. Mangalaraj, J. Mater. Sci. Lett. 22, 25–28 (2003)

    Article  Google Scholar 

  44. J. Melsheimer, D. Ziegler, Thin Solid Films 129, 35–37 (1985)

    Article  CAS  Google Scholar 

  45. A. Ajmi, K. Karoui, K. Khirouni, A. Ben Rhaiem, Optical and dielectric properties of NaCoPO4 in the three phases a, b and g. RSC Adv. 9, 14772 (2019)

    Article  CAS  Google Scholar 

  46. D. Yang, R.A. Gopal, Y. Lee, S. Kim, H. Jeon, V.E. Sathishkumar, A.M. Al-Mohaimeed, W.A. Al-onazi, T. saad Algarni, J. King Saud Univ. Sci. 33, 101397 (2021)

    Article  Google Scholar 

  47. M.K. Roul, S.K. Pradhan, K.D. Song, M.J. Bahoura, J. Mater. Sci. 54, 7062–7071 (2019)

    Article  CAS  Google Scholar 

  48. F. Sarf, I. Karaduman Er, E. Yakar, S. Acar, J. Mater. Sci.: Mater. Electron. 31, 10084–10095 (2020)

    CAS  Google Scholar 

  49. M. Habib, S.S. Hussain, S. Riaz, S. Naseem, Mater. Today: Proc. 2, 5714–5719 (2015)

    Google Scholar 

  50. S. Pati, P. Banerji, S.B. Majumder, Sens. Actuators A 213, 52–58 (2014)

    Article  CAS  Google Scholar 

  51. R. Sahebi, M.R. Roknabadi, M. Behdani, Optik 204, 164204 (2020)

    Article  CAS  Google Scholar 

  52. R. Sreeja Sreedharan, V.S. Kavitha, S. Suresh, R. Reshmi Krishnan, R. Jolly Bose, V.P. Mahadevan Pillai, Appl. Phys. A 124, 815 (2018)

    Article  Google Scholar 

  53. M.R. Ahmed, H.M. Ali, M.F. Hasaneen, Physica B 608, 412747 (2021)

    Article  CAS  Google Scholar 

  54. Y.-C. Lin, L.-Y. Chen, F.-C. Chiu, Crystals 9, 450 (2019)

    Article  CAS  Google Scholar 

  55. C. Granqvist, A. Hultåker, Thin Solid Films 411, 1–5 (2002)

    Article  CAS  Google Scholar 

  56. A.M. Shano, A.A. Habeeb, Z.T. Khodair, S.K. Adnan, J. Phys. Conf. Ser. 1818, 012049 (2021)

    Article  CAS  Google Scholar 

  57. A.M. Abdulwahab, A.A. AL-Adhreai, A.A. Ali Ahmed, Optik 236, 166659 (2021)

    Article  CAS  Google Scholar 

  58. P.W. Gilberd, J. Phys. F: Met. Phys. 12, 1845–1860 (1982)

    Article  CAS  Google Scholar 

  59. S. Mahato, A.K. Kar, J. Electroanal. Chem. 742, 23–29 (2015)

    Article  CAS  Google Scholar 

  60. B. Chen, P. Li, B. Wang, Y. Wang, Appl. Surf. Sci. 593, 153418 (2022)

    Article  CAS  Google Scholar 

  61. T. Bhowmick, A. Ghosh, S. Nag, S.B. Majumder, J. Alloys Compd. 903, 163871 (2022)

    Article  CAS  Google Scholar 

  62. A. Mirzaei, S. Park, G.-J. Sun, H. Kheel, C. Lee, S. Lee, J. Korean Phys. Soc. 69(3), 373–380 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received to conduct this study.

Author information

Authors and Affiliations

Authors

Contributions

IKE contributed to investigation, writing–review and editing, data curation, methodology, and resources. SNİ contributed to investigation, data curation, methodology, and resources. AA contributed to writing–review & editing, data curation, supervision, conceptualization, methodology, and resources. SA contributed to writing–review and editing, supervision, conceptualization, and methodology.

Corresponding author

Correspondence to Irmak Karaduman Er.

Ethics declarations

Conflict of interest

The authors declare no competing interests and all co-authors have approved the contents of this manuscript and submission.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaduman Er, I., İlbak, S.N., Ateş, A. et al. Structural, optical, and gas sensing properties of CdSe thin films deposited by SILAR method. J Mater Sci: Mater Electron 33, 27062–27075 (2022). https://doi.org/10.1007/s10854-022-09369-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09369-1

Navigation