Skip to main content
Log in

Synaptic plasticity in electro-polymerized PEDOT based memristors for neuromorphic application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A polymer based memristor as an artificial synapse has been one proficient approach to mimic biological synapse. It remembers the last state and modulate the output accordingly with subsequent voltage signals at low voltages and at high processing speeds. A functional layer of poly(3,4-ethylenedioxythiophene) (PEDOT) polymer is deposited by electro-polymerization using cyclic voltammetry. Here, we studied Pt/PEDOT/Al based memristor, which exhibited excellent artificial synapse like plasticity. We discuss the basic function of remembering and forgetting of the devices through synapticity and plasticity. STDP, which is the most important Hebbian learning rule for learning and memory showed up to 75% change in synaptic weight under wide range of input signals. The devices show excellent plasticity behavior mimicking biosynaptic behavior, which makes them a suitable system for neuromorphic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during the current study are included in the manuscript or available from the corresponding author.

References

  1. C.D. James, J.B. Aimone, N.E. Miner, C.M. Vineyard, F.H. Rothganger, K.D. Carlson, S.A. Mulder, T.J. Draelos, A. Faust, M.J. Marinella et al., A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications. Biol. Inspired Cogn. Archit. 19, 49–64 (2017)

    Google Scholar 

  2. P. Sheridan, W. Ma, W. Lu, Pattern recognition with memristor networks. In: 2014 IEEE International Symposium on circuits and systems (ISCAS), pp. 1078–1081 (2014). IEEE

  3. S. Resisi, S.M. Popoff, Y. Bromberg, Image transmission through a dynamically perturbed multimode fiber by deep learning. Laser Photonics Rev. 15(10), 2000553 (2021)

    Article  Google Scholar 

  4. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., Scikit-learn: machine learning in python. J. Mach. Learn Res. 12, 2825–2830 (2011)

    Google Scholar 

  5. S. Thiago, M. Walmir, A review of machine learning approaches to spam filtering. Expert Syst. Appl. 36(7), 10206–10222 (2009)

    Article  Google Scholar 

  6. D. Ielmini, Brain-inspired computing with resistive switching memory (rram): devices, synapses and neural networks. Microelectron. Eng. 190, 44–53 (2018)

    Article  CAS  Google Scholar 

  7. B.J. Shastri, A.N. Tait, T.F. de Lima, W.H. Pernice, H. Bhaskaran, C.D. Wright, P.R. Prucnal, Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15(2), 102–114 (2021)

    Article  CAS  Google Scholar 

  8. D. Kuzum, S. Yu, H.P. Wong, Synaptic electronics: materials, devices and applications. Nanotechnology 24(38), 382001 (2013)

    Article  Google Scholar 

  9. J. von Neumann, The principles of large-scale computing machines. IEEE Ann. Hist. Comput. 10(04), 243–256 (1988)

    Article  Google Scholar 

  10. S. Oh, H. Hwang, I. Yoo, Ferroelectric materials for neuromorphic computing. APL Mater. 7(9), 091109 (2019)

    Article  Google Scholar 

  11. Y. Van De Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018)

    Article  Google Scholar 

  12. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833840 (2007)

    Article  Google Scholar 

  13. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  CAS  Google Scholar 

  14. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  CAS  Google Scholar 

  15. H. Han, Z. Xu, K. Guo, Y. Ni, M. Ma, H. Yu, H. Wei, J. Gong, S. Zhang, W. Xu, Tunable synaptic plasticity in crystallized conjugated polymer nanowire artificial synapses. Adv. Intell. Syst. 2(3), 1900176 (2020)

    Article  Google Scholar 

  16. Y.-Y. Zhao, W.-J. Sun, J. Wang, J.-H. He, H. Li, Q.-F. Xu, N.-J. Li, D.-Y. Chen, J.-M. Lu, All-inorganic ionic polymer-based memristor for high-performance and flexible artificial synapse. Adv. Funct. Mater. 30(39), 2004245 (2020)

    Article  CAS  Google Scholar 

  17. V. Milo, C. Zambelli, P. Olivo, E. Pérez, K. Mahadevaiah, M.G. Mahadevaiah, O. Ossorio, C. Wenger, D. Ielmini, Multilevel hfo2-based rram devices for low-power neuromorphic networks. APL Mater. 7(8), 081120 (2019)

    Article  Google Scholar 

  18. S. Deswal, A. Kumar, A. Kumar, Nbox based memristor as artificial synapse emulating short term plasticity. AIP Adv. 9(9), 095022 (2019)

    Article  Google Scholar 

  19. K. Qian, G. Cai, V.C. Nguyen, T. Chen, P.S. Lee, Direct observation of conducting filaments in tungsten oxide based transparent resistive switching memory. ACS Appl. Mater. Interfaces 8(41), 27885–27891 (2016)

    Article  CAS  Google Scholar 

  20. Y. Park, J.-S. Lee, Artificial synapses with short-and long-term memory for spiking neural networks based on renewable materials. ACS Nano 11(9), 8962–8969 (2017)

    Article  CAS  Google Scholar 

  21. W. Lan, J. Gu, S. Wu, Y. Peng, M. Zhao, Y. Liao, T. Xu, B. Wei, L. Ding, F. Zhu, Toward improved stability of nonfullerene organic solar cells: impact of interlayer and built-in potential. Eco. Mat. 3(5), 12134 (2021)

    Google Scholar 

  22. C. Boehler, Z. Aqrawe, M. Asplund, Applications of pedot in bioelectronic medicine. Bioelectron. Med. 2(2), 89–99 (2019)

    Article  Google Scholar 

  23. S. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.-H. Kim, Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28(22), 4203–4218 (2016)

    Article  CAS  Google Scholar 

  24. T. Feng, D. Xie, Y. Lin, H. Zhao, Y. Chen, H. Tian, T. Ren, X. Li, Z. Li, K. Wang et al., Efficiency enhancement of graphene/silicon-pillar-array solar cells by hno3 and pedot-pss. Nanoscale 4(6), 2130–2133 (2012)

    Article  CAS  Google Scholar 

  25. B. Yin, Q. Liu, L. Yang, X. Wu, Z. Liu, Y. Hua, S. Yin, Y. Chen, Buffer layer of pedot: Pss/graphene composite for polymer solar cells. J. Nanosci. Nanotechnol. 10(3), 1934–1938 (2010)

    Article  CAS  Google Scholar 

  26. Y. Van De Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria, S. Agarwal, M.J. Marinella, A. Alec Talin, A. Salleo, A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16(4), 414–418 (2017)

    Article  Google Scholar 

  27. H. Ha, O. Kim, Bipolar switching characteristics of nonvolatile memory devices based on poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) thin film. Appl. Phys. Lett. 93(3), 265 (2008)

    Article  Google Scholar 

  28. J.Y. Kim, H.Y. Jeong, J.W. Kim, T.H. Yoon, S.-Y. Choi, Critical role of top interface layer on the bipolar resistive switching of al/pedot: Pss/al memory device. Curr. Appl. Phys. 11(2), 35–39 (2011)

    Article  Google Scholar 

  29. Z. Wang, F. Zeng, J. Yang, C. Chen, Y. Yang, F. Pan, Reproducible and controllable organic resistive memory based on al/poly (3, 4-ethylene-dioxythiophene): poly (styrenesulfonate)/al structure. Appl. Phys. Lett. 97(25), 271 (2010)

    Article  Google Scholar 

  30. H. Okuzaki, H. Suzuki, T. Ito, Electromechanical properties of poly (3, 4-ethylenedioxythiophene)/poly (4-styrene sulfonate) films. J. Phys. Chem. B. 113(33), 11378–11383 (2009)

    Article  CAS  Google Scholar 

  31. S. Li, F. Zeng, C. Chen, H. Liu, G. Tang, S. Gao, C. Song, Y. Lin, F. Pan, D. Guo, Synaptic plasticity and learning behaviours mimicked through ag interface movement in an ag/conducting polymer/ta memristive system. J. Mater. Chem. C 1(34), 5292–5298 (2013)

    Article  CAS  Google Scholar 

  32. P. Yadav, S. Singhal, A. Patra, Electropolymerized poly (3, 4-ethylenedioxyselenophene) on flexible substrate: a comparative study of electronic and electrochromic properties with sulfur analogue and rigid substrate. Synth. Metals 260, 116264 (2020)

    Article  CAS  Google Scholar 

  33. S. Möller, C. Perlov, W. Jackson, C. Taussig, S.R. Forrest, A polymer/semiconductor write-once read-many-times memory. Nature 426(6963), 166–169 (2003)

    Article  Google Scholar 

  34. P.-J. Chia, L.-L. Chua, S. Sivaramakrishnan, J.-M. Zhuo, L.-H. Zhao, W.-S. Sim, Y.-C. Yeo, P.K.-H. Ho, Injection-induced de-doping in a conducting polymer during device operation: asymmetry in the hole injection and extraction rates. Adv. Mater. 19(23), 4202–4207 (2007)

    Article  CAS  Google Scholar 

  35. G.-q Bi, M.-m Poo, Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)

    Article  CAS  Google Scholar 

  36. T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski, M. Aono, Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10(8), 591–595 (2011)

    Article  CAS  Google Scholar 

  37. T. Chang, S.-H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011)

    Article  CAS  Google Scholar 

  38. S. Song, K.D. Miller, L.F. Abbott, Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919–926 (2000)

    Article  CAS  Google Scholar 

  39. B.L. Jackson, B. Rajendran, G.S. Corrado, M. Breitwisch, G.W. Burr, R. Cheek, K. Gopalakrishnan, S. Raoux, C.T. Rettner, A. Padilla et al., Nanoscale electronic synapses using phase change devices. ACM J. Emerg. Technol. Comput. Syst. 9(2), 1–20 (2013)

    Article  Google Scholar 

  40. E.L. Bienenstock, L.N. Cooper, P.W. Munro, Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2(1), 32–48 (1982)

    Article  CAS  Google Scholar 

Download references

Funding

N.S. would like to thank Council for Scientific and Industrial Research (CSIR) grant under senior research fellowship (SRF) for financial support. This research was funded by CSIR-NPL research support.

Author information

Authors and Affiliations

Authors

Contributions

AP prepared the PEDOT thin films. NS and AB did measurements. NS did data analysis and writing manuscript. AK did overall planning, editing, and supervision of work.

Corresponding author

Correspondence to Ajeet Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 344 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, N., Bisht, A., Patra, A. et al. Synaptic plasticity in electro-polymerized PEDOT based memristors for neuromorphic application. J Mater Sci: Mater Electron 33, 27053–27061 (2022). https://doi.org/10.1007/s10854-022-09368-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09368-2

Navigation