Skip to main content
Log in

The improved microwave dielectric characteristics of TiO2 ceramics produced by Mn2+ and W6+ co-substitution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, the strategy of co-doping Mn2+ ions with W6+ ions is used to improve the comprehensive dielectric performances of TiO2 ceramics. According to the analysis of XRD results, a pure TiO2 phase with a rutile structure can be found throughout the whole substitution range (0 ≤ x ≤ 0.02). Based on the refinement method, it is noted that the tetragonality firstly increase for 0 ≤ x ≤ 0.005, and then decreases for x > 0.005. A slight blue shift is observed for the A1g mode, whereas the Eg mode shows a red shift. The permittivity is highly dependent on the relative density, fc of Ti/(Mn0.5W0.5)-O1(1) and Ti/(Mn0.5W0.5)-O1(2) bond and Afc. The variation of quality factor strongly relies on the relative density, changing c/a value and valence state of Ti. The increase of c/a and elimination of Ti3+ contribute to the significant improvement of Q × f from 947 to 39,000 GHz. The τf dramatically decreases from 520 to 398 ppm/ºC because of the increase of unit cell volume. The excellent dielectric performance of Ti1-x(Mn0.5W0.5)xO2 ceramics can be achieved at x = 0.005 with εr = 105, Q × f = 39,000 GHz and τf = 464.4 ppm/ºC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57–90 (2008)

    Article  CAS  Google Scholar 

  2. I. Khan, M.H. Zafar, M.T. Jan, J. Lloret, M. Basheri, D. Singh, Spectral and energy efficient low-overhead uplink and downlink channel estimation for 5G massive MIMO systems. Entropy 20, 92 (2018)

    Article  Google Scholar 

  3. Y. Guo, H. Ohsato, K. Kakimoto, Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. J. Eur. Ceram. Soc. 26, 1827–1830 (2006)

    Article  CAS  Google Scholar 

  4. M.T. Sebastian, Dielectric materials for wireless communication (Elsevier, 2010)

    Google Scholar 

  5. Z. Wang, H. Chen, T. Wang, Y. Xiao, W. Nian, J. Fan, Enhanced relative permittivity in niobium and europium co-doped TiO2 ceramics. J. Eur. Ceram. Soc. 38, 3847–3852 (2018)

    Article  CAS  Google Scholar 

  6. C. Yang, M. Tse, X. Wei, J. Hao, Colossal permittivity of (Mg + Nb) co-doped TiO2 ceramics with low dielectric loss. J. Mater. Chem. C. 5, 5170–5175 (2017)

    Article  CAS  Google Scholar 

  7. E. Zhao, J. Hao, X. Xue, M. Si, J. Guo, H. Wang, Rutile TiO2 microwave dielectric ceramics prepared via cold sintering assisted two step sintering. J. Eur. Ceram. Soc. 41, 3459–3465 (2021)

    Article  CAS  Google Scholar 

  8. S. Marinel, D.H. Choi, R. Heuguet, D. Agrawal, M. Lanagan, Broadband dielectric characterization of TiO2 ceramics sintered through microwave and conventional processes. Ceram. Int. 39, 299–306 (2013)

    Article  CAS  Google Scholar 

  9. X. Yao, H. Lin, W. Chen, L. Luo, Anti-reduction of Ti4+ in Ba4.2Sm9.2Ti18O54 ceramics by doping with MgO, Al2O3 and MnO2. Ceram. Int. 38, 3011–3016 (2012)

    Article  CAS  Google Scholar 

  10. H. Chen, B. Tang, X. Guo, S. Duan, Y. Long, Y. Li, S. Zhang, Effects of B-site substitution on microwave dielectric properties of Ba6−3xNd8+2x[Ti1−z (Ni1/3Nb2/3)z] 18O54 ceramics. Int. J. Appl. Ceram. Technol. 12, E170–E175 (2015)

    Article  CAS  Google Scholar 

  11. Z. Fang, B. Tang, E. Li, S. Zhang, High-Q microwave dielectric properties in the Na0.5Sm0.5TiO3 + Cr2O3 ceramics by one synthetic process. J. Alloys. Compd. 705, 456–461 (2017)

    Article  CAS  Google Scholar 

  12. B. Tang, S. Yu, H. Chen, S. Zhang, X. Zhou, The influence of Cu substitution on the microwave dielectric properties of BaZn2Ti4O11 ceramics. J. Alloy. Compd. 551, 463–467 (2013)

    Article  CAS  Google Scholar 

  13. Z. Fang, H. Yang, H. Yang, Z. Xiong, X. Zhang, P. Zhao, B. Tang, Ilmenite-type MgTiO3 ceramics by complex (Mn1/2W1/2)4+ cation co-substitution producing improved microwave characteristics. Ceram. Int. 47, 21388–21397 (2021)

    Article  CAS  Google Scholar 

  14. Z. Fang, B. Tang, Y. Yuan, X. Zhang, S. Zhang, Structure and microwave dielectric properties of the Li2/3(1–x)Sn1/3(1–x)MgxO systems (x = 0–4/7). J. Am. Ceram. Soc. 101, 252–264 (2018)

    Article  CAS  Google Scholar 

  15. X. Cheng, Z. Li, J. Wu, Colossal permittivity in ceramics of TiO2 Co-doped with niobium and trivalent cation. J. Mater. Chem A. 3, 5805–5810 (2015)

    Article  CAS  Google Scholar 

  16. V. Swamy, B.C. Muddle, Q. Dai, Size-dependent modifications of the Raman spectrum of rutile TiO2. Appl. Phys. Lett. 89, 163118 (2006)

    Article  Google Scholar 

  17. H. Yang, S. Zhang, H. Yang, Y. Yuan, E. Li, Influence of (Al1/3W2/3)5+ co-substitution for Nb5+ in NdNbO4 and the impact on the crystal structure and microwave dielectric properties. Dalton Trans. 47, 15808–15815 (2018)

    Article  CAS  Google Scholar 

  18. Y.B. Chen, Improved high Q value of MgTiO3–CaTiO3 microwave dielectric resonator using WO3-doped at lower sintering temperature for microwave applications. J. Alloy. Compd. 478, 657–660 (2009)

    Article  CAS  Google Scholar 

  19. F. Gao, D. Li, J. He, Y. Tian, D. Yu, S. Zhang, Chemical bond properties and Mössbauer spectroscopy in REBa2Cu3O7 (RE=Eu, Y). Physica C. 371, 151–155 (2002)

    Article  CAS  Google Scholar 

  20. B.F. Levine, Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys. 59, 1463–1486 (1973)

    Article  CAS  Google Scholar 

  21. J.C. Phillips, Ionicity of the chemical bond in crystals. Rev. Mod. Phys. 42, 317–356 (1970)

    Article  CAS  Google Scholar 

  22. J.A. Van Vechten, Quantum dielectric theory of electronegativity in covalent systems. I electronic dielectric constant. Phys. Rev. 182, 891–905 (1969)

    Article  Google Scholar 

  23. H. Yang, S. Zhang, H. Yang, E. Li, Usage of P-V–L bond theory in studying the structural/property regulation of microwave dielectric ceramics: a review, Inorganic Chemistry. Frontiers 7, 4711–4753 (2020)

    CAS  Google Scholar 

  24. X. Zhang, Z. Fang, H. Yang, P. Zhao, X. Zhang, Y. Li, Z. Xiong, H. Yang, S. Zhang, B. Tang, Lattice evolution, ordering transformation and microwave dielectric properties of rock-salt Li3+xMg2–2xNb1-xTi2xO6 solid-solution system: A newly developed pseudo ternary phase diagram. Acta Mater. 206, 116636 (2021)

    Article  CAS  Google Scholar 

  25. H.L. Pan, Y.X. Mao, Y.K. Yang, Y.W. Zhang, H.T. Wu, Crystal structure, Raman spectra, infrared spectra and microwave dielectric properties of Li2Mg3Ti1-X(Mg1/3Ta2/3)XO6 (0 ≤ x ≤ 0.2) solid solution ceramics. Mater. Res. Bull. 105, 296–305 (2018)

    Article  CAS  Google Scholar 

  26. Q. Liao, L. Li, Structural dependence of microwave dielectric properties of ixiolite structured ZnTiNb2O8 materials: crystal structure refinement and Raman spectra study. Dalton Trans. 41, 6963–6969 (2012)

    Article  CAS  Google Scholar 

  27. S. Yu, B. Tang, S. Zhang, X. Zhou, The effect of Mn addition on phase development, microstructure and microwave dielectric properties of ZrTi2O6–ZnNb2O6 ceramics. Mater. Lett. 80, 124–126 (2012)

    Article  CAS  Google Scholar 

  28. L.X. Pang, H. Wang, D. Zhou, X. Yao, Sintering behavior, structures, and microwave dielectric properties of (LixNb3x)Ti1−4xO2. J. Am. Ceram. Soc. 91, 2947–2951 (2008)

    Article  CAS  Google Scholar 

  29. S.H. Yoon, D.W. Kim, S.Y. Cho, K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006)

    Article  CAS  Google Scholar 

  30. E.L. Colla, I.M. Reaney, N. Setter, Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity. J. Appl. Phys. 74, 3414–3425 (1993)

    Article  CAS  Google Scholar 

  31. H.J. Lee, K.S. Hong, S.J. Kim, I.T. Kim, Dielectric properties of MNb2O6 compounds (where M = Ca, Mn Co, Ni, OR Zn). Mater. Res. Bull. 32, 847–855 (1997)

    Article  CAS  Google Scholar 

  32. J.J. Bian, Y.F. Dong, New high Q microwave dielectric ceramics with rock salt structures (1–x)Li2TiO3+xMgO system (0≤x≤0.5). J. Eur. Ceram. Soc. 30, 325–330 (2010)

    Article  CAS  Google Scholar 

  33. P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, Structure–microwave property relations in (SrxCa(1–x))n+1TinO3n+1. J. Eur. Ceram. Soc. 21, 1723–1726 (2001)

    Article  CAS  Google Scholar 

  34. H.-L. Chen, C.-L. Huang, Microwave dielectric properties and microstructures of Ca1-xNd2x/3TiO3–Li1/2Nd1/2TiO3 ceramics. Jpn. J. Appl. Phys. 41, 5650–5653 (2002)

    Article  CAS  Google Scholar 

  35. H. Ohsato, M. Imaeda, The quality factor of the microwave dielectric materials based on the crystal structure—as an example: the Ba6−3xR8+2xTi18O54 (R = rare earth) solid solutions. Mater. Chem. Phys. 79, 208–212 (2003)

    Article  CAS  Google Scholar 

  36. M.P. Seabra, M. Avdeev, V.M. Ferreira, R.C. Pullar, N.M. Alford, I.M. Reaney, Structure-property relations in xBaTiO3–(1–x)La(Mg1/2Ti1/2)O3 solid solutions. J. Am. Ceram. Soc. 87, 584–590 (2004)

    Article  CAS  Google Scholar 

Download references

Funding

The authors greatly acknowledge the financial support from National Natural Science Foundation of China (Grant Nos. 52102123 and 6171080), and Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC2008).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. ZF, CY, and BT coordinated this work. Material preparation, data collection and analysis of XRD, SEM, Raman spectrum and EDX were performed by SM and JY. MG, LA, KK, CQ, XZ, HY, and ZX carried out the deep analysis of the XPS, Raman spectrum, Rietveld refinement, and complex chemical bond theory. The draft of the manuscript was written by SM and JY under the guidance of ZF, CY, and BT. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zixuan Fang, Chengtao Yang or Bin Tang.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, S., Yang, J., Gong, M. et al. The improved microwave dielectric characteristics of TiO2 ceramics produced by Mn2+ and W6+ co-substitution. J Mater Sci: Mater Electron 33, 27041–27052 (2022). https://doi.org/10.1007/s10854-022-09367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09367-3

Navigation