Skip to main content
Log in

Electrical transport and magnetic properties of semiconducting In0.95Co0.05Sb thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrical and magnetic properties of thermally evaporated In0.95Co0.05Sb thin film are studied in detail. The X-ray diffraction analysis indicated a single-phase polycrystalline film structure with an average grain size of ~ 35 nm. DC resistivity directed that at low temperatures (< 230 K), the film's resistivity is magnetic field dependent. A systematic investigation of temperature and magnetic field-dependent transport properties is undertaken. This field-dependent low-temperature behavior of the film is explained based on electron–electron, electron–phonon, electron-magnon, and Kondo-like spin-dependent scattering theories. The low-temperature data are estimated for the density of states using variable range hopping theory, whereas the Arrhenius plot is explored using the high-temperature resistivity behavior of the film. The surface morphological study indicated a uniform particle distribution. The weak magnetic signals are observed through magnetic force microscopy. The temperature-dependent magnetization curve shows the film's superparamagnetism nature applicable to the spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

References

  1. G.A. Prinz, Science 282, 1660 (1998)

    Article  CAS  Google Scholar 

  2. N.D. Parashar, N. Rangaraju, V.K. Lazarov, S. Xie, B.W. Wessels, Phys. Rev. B Condens. Matter Mater. Phys. 81, 115321 (2010)

    Article  Google Scholar 

  3. O. Kazakova, J.C. Gallop, P. See, D. Cox, G.K. Perkins, J.D. Moore, L.F. Cohen, IEEE Trans. Magn. 45, 4499 (2009)

    Article  CAS  Google Scholar 

  4. A. Okamoto, T. Yoshida, S. Muramatsu, I. Shibasaki, J. Cryst. Growth 201, 765 (1999)

    Article  Google Scholar 

  5. K. Kanisawa, H. Yamaguchi, Y. Hirayama, Appl. Phys. Lett. 76, 589 (2000)

    Article  CAS  Google Scholar 

  6. S. Ozer, C. Besikci, J. Phys. D Appl. Phys. 36, 559 (2003)

    Article  CAS  Google Scholar 

  7. G. Finger, R.J. Dorn, M. Meyer, L. Mehrgan, J. Stegmeier, A. Moorwood, Nucl. Instrum. Methods Phys. Res. A 549, 79 (2005)

    Article  CAS  Google Scholar 

  8. K. Togawa, H. Sanbonsugi, A. Lapicki, M. Abe, H. Handa, A. Sandhu, IEEE Trans. Magn. 41, 3661 (2005)

    Article  CAS  Google Scholar 

  9. H.A. Nilsson, P. Caroff, C. Thelander, M. Larsson, J.B. Wagner, L.E. Wernersson, L. Samuelson, H.Q. Xu, Nano Lett. 9, 3151 (2009)

    Article  CAS  Google Scholar 

  10. R.K. Paul, S. Badhulika, A. Mulchandani, Appl. Phys. Lett. 99, 033103 (2011)

    Article  Google Scholar 

  11. K. Togawa, H. Sanbonsugi, A. Sandhu, M. Abe, H. Narimatsu, K. Nishio, H. Handa, Jpn. J. Appl. Phys. Part 2 Lett. 44, 1494 (2005)

    Article  Google Scholar 

  12. K. Chaudhari, P.H. Soni, A. Mahadik, Vacuum 154, 49 (2018)

    Article  CAS  Google Scholar 

  13. Y.R. Toda, K.S. Chaudhari, A.B. Jain, D.N. Gujarathi, Archives of Physics Research 2, 146 (2011)

    CAS  Google Scholar 

  14. V. Fleurov, K. Kikoin, V.A. Ivanov, P.M. Krstajić, F.M. Peeters, J. Magn. Magn. Mater. 272, 1967 (2004)

    Article  Google Scholar 

  15. P.M. Krstajić, F.M. Peeters, V.A. Ivanov, V. Fleurov, K. Kikoin, Phys. Rev. B Condens. Matter Mater. Phys. 70, 195215 (2004)

    Article  Google Scholar 

  16. K.F. Hulme, J.B. Mullin, Solid State Electron. 5, 211 (1962)

    Article  CAS  Google Scholar 

  17. H. Okimura, Y. Koizumi, S. Kaida, Thin Solid Films 254, 169 (1995)

    Article  CAS  Google Scholar 

  18. S.R. Vishwakarma, A. Kumar, R.S.N. Tripathi, Rahul, S. Das, Indian J. Pure Appl. Phys. 51, 260 (2013)

  19. J. Singh, T. Chandel, P. Rajaram, AIP Conf. Proc. 1675, 030008 (2015)

    Article  Google Scholar 

  20. S. Yanagi, K. Kuga, T. Slupinski, H. Munekata, Physica E Low Dimens. Syst. Nanostruct. 20, 333 (2004)

    Article  CAS  Google Scholar 

  21. T. Wojtowicz, W.L. Lim, X. Liu, G. Cywiński, M. Kutrowski, L.V. Titova, K. Yee, M. Dobrowolska, J.K. Furdyna, K.M. Yu, W. Walukiewicz, G.B. Kim, M. Cheon, X. Chen, S.M. Wang, H. Luo, I. Vurgaftman, J.R. Meyer, Physica E Low Dimens. Syst. Nanostruct. 20, 325 (2004)

    Article  CAS  Google Scholar 

  22. O.N. Pashkova, V.P. Sanygin, V.A. Ivanov, A.G. Padalko, V.M. Novotortsev, Inorg. Mater. 42, 459 (2006)

    Article  CAS  Google Scholar 

  23. A.V. Kochura, B.A. Aronzon, K.G. Lisunov, A.V. Lashkul, A.A. Sidorenko, R. de Renzi, S.F. Marenkin, M. Alam, A.P. Kuzmenko, E. Lähderanta, J. Appl. Phys. 113, 083905 (2013)

    Article  Google Scholar 

  24. K. Nishijima, N.T. Tu, M. Tanaka, P.N. Hai, J. Cryst. Growth 511, 127 (2019)

    Article  CAS  Google Scholar 

  25. N.T. Tu, P.N. Hai, L.D. Anh, M. Tanaka, Appl. Phys. Express 12, 103004 (2019)

    Article  Google Scholar 

  26. N.T. Tu, P.N. Hai, L.D. Anh, M. Tanaka, Appl. Phys. Express 11, 063005 (2018)

    Article  Google Scholar 

  27. J.Y. You, B. Gu, S. Maekawa, G. Su, Phys. Rev. B 102, 094432 (2020)

    Article  CAS  Google Scholar 

  28. R. Sharma, J.C. Perkinson, N. Peard, J. LeBlanc, N. Patel, D. Callahan, C.Y. Wang, R. Gaume, K.A. Richardson, Opt. Mater. Express 11, 2618 (2021)

    Article  Google Scholar 

  29. N. Dixit, J.V. Vaghasia, S.S. Soni, M. Sarkar, M. Chavda, N. Agrawal, H.P. Soni, J. Environ. Chem. Eng. 3, 1691 (2015)

    Article  CAS  Google Scholar 

  30. D.R.S. Somayajulu, M. Chawda, N. Patel, M. Sarkar, K.C. Sebastian, K. Venugopalan, A. Gupta, Appl. Phys. Lett. 87, 242508 (2005)

    Article  Google Scholar 

  31. N. Agrawal, M. Sarkar, V. Ganesan, J. Appl. Phys. 126, 215702 (2019)

    Article  Google Scholar 

  32. N. Agrawal, M. Sarkar, M. Chawda, V. Ganesan, Mater. Chem. Phys. 143, 330 (2013)

    Article  CAS  Google Scholar 

  33. N. Agrawal, M. Sarkar, M. Chawda, K. Asokan, Radiat. Eff. Defects Solids 171, 583 (2016)

    Article  CAS  Google Scholar 

  34. N. Agrawal, M. Sarkar, M. Chawda, V. Ganesan, D. Bodas, Mater. Res. Express 2, 025902 (2015)

    Article  CAS  Google Scholar 

  35. V.M. Novotortsev, I.S. Zakharov, A.V. Kochura, S.F. Marenkin, R. Laiho, E. Lahderanta, A. Lashkul, A.G. Veresov, A.V. Molchanov, G.S. Yur’ev, Russ. J. Inorg. Chem. 51, 1627 (2006)

    Article  Google Scholar 

  36. N. Barot, P.K. Mehta, A. Rao, R. Thomas, Y.K. Kuo, S.K. Mishra, J. Appl. Phys. 127, 175704 (2020)

    Article  CAS  Google Scholar 

  37. B.H. O’Connor, S. Pratapa, Adv. X-Ray Anal. 45, 158 (2002)

    CAS  Google Scholar 

  38. R. Mariappan, M. Ragavendar, V. Ponnuswamy, J Alloys Compd 509, 7337 (2011)

    Article  CAS  Google Scholar 

  39. M. Cheon, Y. Cho, C.H. Park, C.R. Cho, S.Y. Jeong, RSC Adv 8, 9895 (2018)

    Article  CAS  Google Scholar 

  40. R. Bagherzadeh, M. Gorji, M. S. Sorayani Bafgi, N. Saveh-Shemshaki, in Electrospun Nanofibers (Elsevier, Cambridge, 2017), p. 467.

  41. J.X. Sui, X.X. Wang, X.T. Zhang, W.P. Han, C. Song, J. Yu, J.Q. Chen, H.H. Liu, F. Yuan, Y.Z. Long, J. Magn. Magn. Mater. 498, 166107 (2020)

    Article  CAS  Google Scholar 

  42. C. Majumder, S. Bhattacharya, T.K. Mondal, S.K. Saha, J. Magn. Magn. Mater. 535, 167941 (2021)

    Article  CAS  Google Scholar 

  43. T.I. Su, C.R. Wang, S.T. Lin, R. Rosenbaum, Phys. Rev. B Condens. Matter Mater. Phys. 66, 054438 (2002)

    Article  Google Scholar 

  44. D.K. Dhruv, B.H. Patel, D. Lakshminarayana, Mater. Res. Innov. 20, 285 (2016)

    Article  CAS  Google Scholar 

  45. A. Ammari, M. Trari, N. Zebbar, Mater. Sci. Semicond. Process 89, 97 (2019)

    Article  CAS  Google Scholar 

  46. G. Lalitha, P.V. Reddy, J. Alloys Compd. 494, 476 (2010)

    Article  CAS  Google Scholar 

  47. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    Article  CAS  Google Scholar 

  48. V. Ambegaokar, B.I. Halperin, J.S. Langer, Phys. Rev. B 4, 2612 (1971)

    Article  Google Scholar 

  49. P.K. Muduli, G. Singh, R. Sharma, R.C. Budhani, J. Appl. Phys. 105, 133910 (2009)

    Article  Google Scholar 

  50. S. Singh, M.S.R. Rao, Phys. Rev. B Condens. Matter Mater. Phys 80, 045210 (2009)

    Article  Google Scholar 

  51. S.A. Koch, R.H. te Velde, G. Palasantzas, J.T.M. de Hosson, Appl. Phys. Lett. 84, 556 (2004)

    Article  CAS  Google Scholar 

  52. C.B. Fitzgerald, M. Venkatesan, L.S. Dorneles, R. Gunning, P. Stamenov, J.M.D. Coey, P.A. Stampe, R.J. Kennedy, E.C. Moreira, U.S. Sias, Phys. Rev. B Condens. Matter Mater. Phys. 74, 115307 (2006)

    Article  Google Scholar 

  53. M. Radchenko, G. Lashkarev, O. Baibara, M. Bugaiova, Y. Stelmakh, L. Krushynska, M. Foltyn, W. Knoff, T. Story, N. Nedelko, A. Ślawska-Waniewska, Phys. Status Solidi B Basic Res. 256, 1900145 (2019)

    Article  CAS  Google Scholar 

  54. B. Aslibeiki, P. Kameli, H. Salamati, G. Concas, M.S. Fernandez, A. Talone, G. Muscas, D. Peddis, Beilstein J. Nanotechnol. 10, 856 (2019)

    Article  CAS  Google Scholar 

  55. D. Dutta, D. Bahadur, J. Mater. Chem. 22, 24545 (2012)

    Article  CAS  Google Scholar 

  56. S. Banerjee, M. Mandal, N. Gayathri, M. Sardar, Appl. Phys. Lett. 91, 182501 (2007)

    Article  Google Scholar 

  57. Y-C. Ou, Z-Y. Wu, F-R. Chen, J-J. Kai and W-B. Jian, Characterization of Room-Temperature Ferromagnetic Zn Co O Nanowires, in Nanowires, ed. By Paola Prete (IntechOpen, London, 2010) https://doi.org/10.5772/39509

    Book  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. V. Raghavendra Reddy and Dr. R. J. Choudhary of UGC DAE CSR Laboratory Indore, India, for their cooperation in utilizing the experimental facilities and fruitful suggestions.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. NA, MS, and DKD performed material preparation, data collection, and analysis. NA wrote the first draft of the manuscript, and all authors commented on previous versions. All authors read and approved the final manuscript. PN contributed to reply the reviewer’s comments actively.

Corresponding authors

Correspondence to Naveen Agrawal or D. K. Dhruv.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, N., Sarkar, M., Dhruv, D.K. et al. Electrical transport and magnetic properties of semiconducting In0.95Co0.05Sb thin film. J Mater Sci: Mater Electron 33, 24068–24077 (2022). https://doi.org/10.1007/s10854-022-09362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09362-8

Navigation