Skip to main content
Log in

Emission properties of reduced graphene oxide-coated Er3+-tellurite glass for fiber optics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, reduced graphene oxide-coated zinc borotellurite doped with erbium oxide nanoparticles denoted as ZBTEr (NPs)-rGO was studied as an approach to enhance the optical properties of glass materials. Herein, a melt-quenched technique was used to prepare the ZBTEr (NPs) glasses. A simple and inexpensive spray-coated technique was employed to deposit the rGO onto the glass surfaces directly. The morphological studies of ZBTEr (NPs)-rGO glass surfaces were investigated by scanning electron microscope (SEM) and high-resolution transmission electron microscopy (HR-TEM) meanwhile, the structural investigation of ZBTEr (NPs) glasses was revealed by X-ray diffraction (XRD) and Raman analysis. The morphological analysis revealed the residual oxygen groups functionalized on ZBTEr (NPs)-rGO glass surfaces meanwhile, TEM images confirmed the presence of Er (NPs) in the glassy matrix. The glass samples showed the existence of structural disorder and amorphous nature. The absorption spectra presented the transition bands that existed from 4I15/2 ground state level to excited state levels of 2H9/2, 4F5/2, 4F7/2, 2H11/2, 4S3/2, 4F9/2, 4I11/2, and 4I9/2, respectively. Judd–Ofelt analysis was performed to obtain the intensity parameters (Ωλ), radiative transition (A), branching ratios (βR), and radiative lifetimes (tr). The radiative parameter and branching ratio values suggested the higher stimulated emission radiative at 2H11/2 → 4I15/2 transition for present glass The luminescence spectra exhibited two emission peaks centred at 539 nm and 558 nm which were assigned to 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions, respectively. The optical results for ZBTEr (NPs)-rGO and ZBTEr (NPs)-uncoated were compared to determine the differences between coated and uncoated glasses. These results highlight the significant effect of rGO deposited onto tellurite-based glass and thus, this work proposed the potential coating materials for improving current fiber optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  CAS  Google Scholar 

  2. N. Sharma, M. Arif, S. Monga, M. Shkir, Y.K. Mishra, A. Singh, Investigation of bandgap alteration in graphene oxide with different reduction routes. Appl. Surf. Sci. 513, 145396 (2020)

    Article  CAS  Google Scholar 

  3. A. Afroozeh, Dependence of linear and non-linear optical properties to sp3 domains level and edges length in graphene-based nanomaterials. Optik (Stuttg) 226, 165903 (2021)

    Article  CAS  Google Scholar 

  4. I. Papadakis, A. Bakandritsos, A.K. Swain, T. Szabo, S. Couris, Effects of size and oxidation on the nonlinear optical response and optical limiting of graphene oxide sheets. J. Phys. Chem. C 124, 11265–11273 (2020)

    Article  CAS  Google Scholar 

  5. M.I. Necolau, A.M. Pandele, Recent advances in graphene oxide-based anticorrosive coatings: An overview. Coatings 10, 1149 (2020)

    Article  CAS  Google Scholar 

  6. X. Gao et al., Humidity-sensitive macroscopic lubrication behavior of an as-sprayed graphene oxide coating. Carbon NY. 140, 124–130 (2018)

    Article  CAS  Google Scholar 

  7. M. Wang, Z. Li, K. Hou, J. Wang, S. Yang, Balancing oxygen-containing groups and structural defects for optimizing macroscopic tribological properties of graphene oxide coating. Appl. Surf. Sci. 516, 146122 (2020)

    Article  CAS  Google Scholar 

  8. S. Azizighannad, S. Mitra, Stepwise reduction of graphene oxide (GO) and its effects on chemical and colloidal properties. Sci. Rep. 8, 10083 (2018)

    Article  Google Scholar 

  9. R. Tarcan, O. Todor-Boer, I. Petrovai, C. Leordean, S. Astilean, I. Botiz, Reduced graphene oxide today. J. Mater. Chem. C 8, 1198–1224 (2020)

    Article  CAS  Google Scholar 

  10. X. Shen, G. Cheng, L. Zhang, W. Wei, Fabrication of a hybrid-cladding tellurite glass fiber doped with Tm3+ and Ho3+. J. Lumin. 227, 117540 (2020)

    Article  CAS  Google Scholar 

  11. N. Effendy, H.A.A. Sidek, M.K. Halimah, M.H.M. Zaid, Enhancement on thermal, elastic and optical properties of new formulation tellurite glasses: influence of ZnO as a glass modifier. Mater. Chem. Phys. 273, 125156 (2021)

    Article  CAS  Google Scholar 

  12. T.M. Machado, R.F. Falci, I.L. Silva, V. Anjos, M.J.V. Bell, M.A.P. Silva, Erbium 1.55μm luminescence enhancement due to copper nanoparticles plasmonic activity in tellurite glasses tamires. Mater. Chem. Phys. 224, 73–78 (2019)

    Article  CAS  Google Scholar 

  13. N. Ding, J. Diao, D. Zhang, T. Zheng, J. Lv, Spectroscopic properties of Yb3+ and Nd3+ co-doped tellurite glass for 1.0 μm laser application. Ceram. Int. 46, 25633–25637 (2020)

    Article  CAS  Google Scholar 

  14. N.L. Amiar Rodin, M.R. Sahar, Erbium doped sodium magnesium boro-tellurite glass: stability and Judd-Ofelt analysis. Mater. Chem. Phys. 216, 177–185 (2018)

    Article  CAS  Google Scholar 

  15. M.K. Halimah et al., Effect of erbium nanoparticles on structural and spectroscopic properties of bio-silica borotellurite glasses containing silver oxide. Mater. Chem. Phys. 236, 121795 (2019)

    Article  CAS  Google Scholar 

  16. M. Fang et al., Preparation of highly conductive graphene-coated glass fibers by sol-gel and dip-coating method. J. Mater. Sci. Technol. 35(9), 1989–1995 (2019)

    Article  CAS  Google Scholar 

  17. U. Ishtiaq, A. Aref, A.S. Muhsan, A. Rashid, S.S. Hamdi, High strength glass beads coated with CNT/rGO incorporated urethane coating for improved crush resistance for effective hydraulic fracturing. Prod. Technol. Pet. J. Explor. (2022). https://doi.org/10.1007/s13202-022-01468-3

    Article  Google Scholar 

  18. R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, M.A. Atieh, XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 45, 14439–14448 (2019)

    Article  CAS  Google Scholar 

  19. H.P. Mungse, O.P. Khatri, Chemically functionalized reduced graphene oxide as a novel material for reduction of friction and wear. J. Phys. Chem. C 118(26), 14394–14402 (2014)

    Article  CAS  Google Scholar 

  20. G. Greenwood, The growth of dispersed precipitates in solutions. Acta Metall. 4(3), 243–248 (1956)

    Article  CAS  Google Scholar 

  21. I. Bulus, R. Hussin, S.K. Ghoshal, A.R. Tamuri, S.A. Jupri, Enhanced elastic and optical attributes of boro-telluro-dolomite glasses: Role of CeO2 doping. Ceram. Int. 45, 18648–18658 (2019)

    Article  CAS  Google Scholar 

  22. N. Sharma, S. Tomar, M. Shkir, R. Kant Choubey, A. Singh, Study of optical and electrical properties of graphene oxide. Mater. Today Proc. 36, 730–735 (2019)

    Article  Google Scholar 

  23. W. Liu, G. Speranza, Tuning the oxygen content of reduced graphene oxide and effects on its properties. ACS Omega 6(9), 6195–6205 (2021)

    Article  CAS  Google Scholar 

  24. M.D. Nurhafizah, A.B. Suriani, A. Mohamed, T. Soga, Effect of voltage applied for graphene oxide/latex nanocomposites produced via electrochemical exfoliation and its application as conductive electrodes. Diam. Relat. Mater. (2020). https://doi.org/10.1016/j.diamond.2019.107624

    Article  Google Scholar 

  25. M. Fang, X. Xiong, Y. Hao, T. Zhang, H. Wang, Preparation of highly conductive graphene-coated glass fibers by sol-gel and dip-coating method. J. Mater. Sci. Technol. 35(9), 1989–1995 (2019)

    Article  CAS  Google Scholar 

  26. M. Lundie, Z. Sljivancanin, S. Tomic, Electronic and optical properties of reduced graphene oxide. J. Mater. Chem. C 3, 7632–7641 (2015)

    Article  CAS  Google Scholar 

  27. S.Y. Marzouk, M.A. Azooz, H.A. El Batal, Judd-Ofelt analysis of spectroscopic measurements of Er3+ doped boro-zincate glasses. J. Mol. Struct. 1243, 130925 (2021)

    Article  CAS  Google Scholar 

  28. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 49(10), 4424–4442 (1968)

    Article  CAS  Google Scholar 

  29. H. Wen et al., Thermal, optical characterization and Judd-Ofelt Analysis of Nd3+-Doped BaO-TeO2-B2O3 glasses. Mater. Technol. 53(3), 305–309 (2019)

    CAS  Google Scholar 

  30. B.R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 127(3), 750–761 (1962)

    Article  CAS  Google Scholar 

  31. C.K. Jørgensen, B.R. Judd, Hypersensitive pseudoquadrupole transitions in lanthanides. Mol. Phys. 8(3), 281–290 (1964)

    Article  Google Scholar 

  32. N.N. Yusof, S.K. Ghoshal, M.N. Azlan, Optical properties of titania nanoparticles embedded Er3+-doped tellurite glass: Judd-Ofelt analysis. J. Alloys Compd. 724, 1083–1092 (2017)

    Article  CAS  Google Scholar 

  33. V.G. Maslov, A.I. Svitenkov, V.V. Krzhizhanovskaya, Abnormally high oscillator strengths of the graphene nanoribbons electronic spectrum: quantum chemistry calculations. RSC Adv (2016). https://doi.org/10.1039/C6RA04528F

    Article  Google Scholar 

  34. A. Awang, S.K. Ghoshal, M.R. Sahar, R. Arifin, Gold nanoparticles assisted structural and spectroscopic modification in Er3+-doped zinc sodium tellurite glass. Opt. Mater. (Amst) 42, 495–505 (2015)

    Article  CAS  Google Scholar 

  35. Z.A. Said Mahraz, M.R. Sahar, S.K. Ghoshal, Enhanced luminescence from silver nanoparticles integrated Er3+-doped boro-tellurite glasses: Impact of annealing temperature. J. Alloys Compd. 649, 1102–1109 (2015)

    Article  CAS  Google Scholar 

  36. C.K. Jørgensen, R. Reisfeld, Judd-Ofelt parameters and chemical bonding. J. Less-Common Met. 93, 107–112 (1983)

    Article  Google Scholar 

  37. S. Bhardwaj, R. Shukla, S. Sanghi, A. Agarwal, I. Pal, Spectroscopic properties of Sm3+ doped lead bismosilicate glasses using Judd-Ofelt theory. Spectrochim. Acta Part A 117, 191–197 (2014)

    Article  CAS  Google Scholar 

  38. R. Wan, P. Wang, S. Li, Y. Ma, 2.86 μm emission and fluorescence enhancement through controlled precipitation of ZnTe nanocrystals in DyF3 doped multicomponent tellurite oxyfluoride glass. J. Non. Cryst. Solids 564, 120842 (2021)

    Article  CAS  Google Scholar 

  39. M. Iezid et al., Judd-Ofelt analysis and luminescence studies of Er3+ doped halogeno-antimonate glasses. Opt. Mater. (Amst) 120, 111422 (2021)

    Article  CAS  Google Scholar 

  40. M.N. Azlan, M.K. Halimah, A.B. Suriani, Y. Azlina, S.A. Umar, R. El-Mallawany, Upconversion properties of erbium nanoparticles doped tellurite glasses for high efficient laser glass. Opt. Commun. 448, 82–88 (2019)

    Article  CAS  Google Scholar 

  41. Y. Zhang, L. Xia, X. Shen, J. Li, G. Yang, Y. Zhou, Broadband mid-infrared emission in Dy3+/Er3+ co-doped tellurite glass. J. Lumin. 236, 118078 (2021)

    Article  CAS  Google Scholar 

  42. Y. Zhang, L. Xia, C. Li, J. Ding, J. Li, Y. Zhou, Enhanced 2.7 µm mid-infrared emission in Er3+/Ho3+ co-doped tellurite glass. Opt. Laser Technol. 138, 106913 (2021)

    Article  CAS  Google Scholar 

  43. Z. Liu, J. She, B. Peng, Spectroscopic properties of Er3+-doped fluoroindate glasses. J. Rare Earths (2021). https://doi.org/10.1016/j.jre.2021.05.011

    Article  Google Scholar 

  44. R.R. Jacobs, M.J. Weber, Dependence of the 4F3/24111/2 induced-emission cross section for Nd3+ on glass composition. IEEE J. Quantum Electron. 12(2), 102–111 (1976)

    Article  Google Scholar 

  45. A.M. Hamza et al., Structural, optical and thermal properties of Er3+-Ag codoped bio-silicate borotellurite glass. Results Phys. 14, 102457 (2019)

    Article  Google Scholar 

  46. H. Zanane et al., Judd-Ofelt analysis and crystal field calculations of Er3+ ions in new oxyfluorogermanotellurite glasses and glass-ceramics. Opt. Mater (Amst) 100, 109640 (2020)

    Article  CAS  Google Scholar 

  47. L. Aarts, S. Jaeqx, B.M. Van Der Ende, A. Meijerink, Downconversion for the Er3+, Yb3+ couple in KPb2Cl—A low-phonon frequency host. J. Lumin. 131, 608–613 (2011)

    Article  CAS  Google Scholar 

  48. A.M. Hamza, M.K. Halimah, F.D. Muhammad, K.T. Chan, Physical properties, ligand field and Judd-Ofelt intensity parameters of bio-silicate borotellurite glass system doped with erbium oxide. J. Lumin. 207, 497–506 (2019)

    Article  CAS  Google Scholar 

  49. K. Maheshvaran, S. Arunkumar, V. Sudarsan, V. Natarajan, K. Marimuthu, Structural and luminescence studies on Er3+/Yb3+ co-doped boro-tellurite glasses. J. Alloys Compd. 561, 142–150 (2013)

    Article  CAS  Google Scholar 

  50. J.G. Câmara, D.M. da Silva, L.R.P. Kassab, C.B. de Araújo, A.S.L. Gomes, Random laser emission from neodymium doped zinc tellurite glass-powder presenting luminescence concentration quenching. J. Lumin. 233, 117936 (2021)

    Article  Google Scholar 

  51. M.N. Azlan, M.K. Halimah, S.O. Baki, D.W. Mohamad, Green emission of tellurite based glass containing erbium oxide nanoparticles. J. Nanomater. (2015). https://doi.org/10.1155/2015/952308

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through Large Groups Project under grant number L.R.G.P/174/43. The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R26), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This research was financially supported by Skim Geran Penyelidikan Fundamental (FRGS) Fasa 1/2018 (Grant code: 2019-0006-102-02). The authors would like to thank the following institutions for equipment support: Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris.

Funding

The funding was provided by Deanship of Scientific Research, Princess Nourah Bint Abdulrahman University, PNURSP2022R26, Azlan M.N

Author information

Authors and Affiliations

Authors

Contributions

YA., (write the research article), MNA, (supervise the methodology and data analysis), ABS, (produce the graphene oxide), HRS (determine the glass composition), IB, (characterize the XRD analysis), IK, (characterize the UV–visible spectra), NA-H, (characterize the FESEM analysis), SAU, (analyze the UV–Visible spectra), KB. K, (determine optical band gap), MHMZ., (determine the refractive index), HR., (assists the graphene oxide production), SMI, (assists the spray coating technique), SNN, (determine Judd–Ofelt analysis), NNY, (fabricate the glass samples) KMK, (determine the luminescence analysis), ZAA., MSA-B (analyze optical data), RAT (determine the RAMAN analysis), FF (analyze the structural and morphological analysis).

Corresponding author

Correspondence to M. N. Azlan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azlina, Y., Azlan, M.N., Suriani, A.B. et al. Emission properties of reduced graphene oxide-coated Er3+-tellurite glass for fiber optics. J Mater Sci: Mater Electron 33, 26915–26930 (2022). https://doi.org/10.1007/s10854-022-09356-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09356-6

Navigation