Skip to main content
Log in

Magnetic entropy change CaBaCo4O7 compound by Al and Ni substitution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The magnetic and magnetic entropy behaviors of the CaBaCo4O7 with Al-doping CaBaCo3.96Al0.06O7 and Ni-doping CaBaCo3.96Ni0.06O7 compound are observed. When compared with the Al-doping, Ni-doping shows that a huge decrease of ferrimagnetism is produced. For Al-doping, the magnetic measurements suggest that spin-glass and ferromagnetic transitions are observed at 25 K and 45 K. For Ni-doping, besides the above two transitions, another peak is observed due to the antiferromagnetic (AFM) phase appearance at ~ 80 K. The plot of H/M vs M2 of the isotherms in the vicinity of the Curie temperature suggests that this phase transition was first-order phase transition for all compounds. With decreasing the temperature, the system enters charge-order state and the negative entropy is observed for CaBaCo4O7 and CaBaCo3.96Al0.04O7 compound. However, unlike the nonmagnetic doping, replacement of Co2+ in the zig-zag ferromagnetic chain by Ni2+ does not truncate the chain, but it perturbs the magnetic interaction through antiferromagnetic exchange with cobalt following Goodenough–Kanamori rules. This possibly reorients the cobalt spins adjacent to the dopant in the chain which modifies ferrimagnetic ground state resulting in competing magnetic states. These are likely responsible for the change in magnetic ground state of CaBaCo4O7, this results in suppression of ferrimagnetic state with the evolution of antiferromagnetism and magnetic frustration. The result suggests that the AFM interaction between the dopant Ni2+ and Co2+ ions has a crucial role in the destabilization of the ferromagnetic structure, whereas the triangular geometry of the cobalt sublattice imposes the appearance of magnetic frustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Mican, R.A. One, R.C. Pop, C.V. Tiusan, R. Tetean, Influence of Cu addition on the structural, magnetic and magnetocaloric properties of the PrCo3 intermetallic compound. J. Alloys Compd. 905, 164248 (2022)

    Article  CAS  Google Scholar 

  2. B. Sahu, R.D. Fobasso, B.M. Sondezi, A.M. Strydom, Large magnetocaloric effect in Ho2Pd2Pb. Mater. Today Commun. 31, 103327 (2022)

    Article  CAS  Google Scholar 

  3. Y. Yang, K. Deng, Z. Xu, K. Han, H.X. Zheng, Revisiting high-temperature phase transition and magnetocaloric effect of LaFe11.6 Si1.4 alloy. J. Magn. Magn. Mater. 551, 169168 (2022)

    Article  CAS  Google Scholar 

  4. G.Q. Yao, S.Y. Sun, J.C. Yang, H.F. Wu, Q. Wang, J. Zhu, W.B. Cui, Enhanced magnetocaloric effects in hetero-structural alloyed Er2In1-xAlx (0≤ x≤ 0.4) system by novel nonhysteretic metamagnetsm. Scripta Mater. 194, 113649 (2021)

    Article  CAS  Google Scholar 

  5. X.Q. Zheng, B. Zhang, Y.Q. Li, H. Wu, H. Zhang, J.Y. Zhang, S.G. Wang, Q.Z. Huang, B.G. Shen, Large magnetocaloric effect in Er12Co7 compound and the enhancement of δTFWHM by Ho-substitution. J. Alloy Compd. 680, 617–622 (2016)

    Article  CAS  Google Scholar 

  6. R. Das, R. Prabhu, N. Venkataramani, S. Prasad, L. Li, M.H. Phan, V. Keppens, D. Mandrus, H. Srikanth, Giant low-field magnetocaloric effect and refrigerant capacity in reduced dimensionality EuTiO3 multiferroics. J. Alloy Compd. 850, 156819 (2021)

    Article  CAS  Google Scholar 

  7. W. Zhang, Z.J. Mo, Z.H. Hao, J. Shen, J.W. Luo, R.J. Chang, L. Li, Fe doping effect on EuTiO3: the magnetic properties and giant magnetocaloric effect. Int. J. Appl. Ceram. Technol. 16(4), 1606–1611 (2019)

    Article  CAS  Google Scholar 

  8. Z.J. Mo, Q.L. Sun, S. Han, Y. Zhao, X. Chen, L. Li, G.D. Liu, F.B. Meng, J. Shen, Effects of Mn-doping on the giant magnetocaloric effect of EuTiO3 compound. J. Magn. Magn. Mater. 456, 31–37 (2018)

    Article  CAS  Google Scholar 

  9. A. Mabrouki, H. Chadha, O. Messaoudi, A. Benali, T. Mnasri, E. Dhahri, M.A. Valente, S. Elgharbi, A. Dhahri, L. Manai, Experimental and theoretical study of magnetic and magnetocaloric properties of the lacunar La0.8 0.2 MnO2.8 compound: bean-rodbell model. Inorg. Chem. Commun. 139, 109310 (2022)

    Article  CAS  Google Scholar 

  10. M. Valldor, M. Andersson, The structure of the new compound YBaCo4O7 with a magnetic feature. Solid State Sci. 4(7), 923–931 (2002)

    Article  CAS  Google Scholar 

  11. M. Valldor, Disordered magnetism in the homologue series YBaCo4−xZnxO7 (x= 0, 1, 2, 3). J. Phys. Condens. Mat. 16(50), 9209 (2004)

    Article  CAS  Google Scholar 

  12. A.P. Ramirez, Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24(1), 453–480 (1994)

    Article  CAS  Google Scholar 

  13. J.T. Chalker, C. Lacroix, P. Mendels, F. Mila, Introduction to frustrated magnetism: materials, experiments, theory (Springer, New York, 2011), p.164

    Google Scholar 

  14. B. Raveau, V. Caignaert, V. Hardy, M.M. Seikh, Transition metal oxides with triangular metallic sublattices: From multiferroics to low-dimensional magnets. Comptes Rendus Chim. 21(10), 952–957 (2018)

    Article  CAS  Google Scholar 

  15. Z. Qu, L. Ling, L. Zhang, L. Pi, Y.H. Zhang, Magnetic properties of the ferrimagnetic cobaltite CaBaCo4O7. Solid State Commun. 151(13), 917–919 (2011)

    Article  CAS  Google Scholar 

  16. Y. Zou, Z. Qu, L. Zhang, W. Ning, L.S. Ling, L. Pi, Y.H. Zhang, The effect of Al doping on the structure and magnetism in cobaltite CaBaCo4O7. J. Alloys Compd. 576, 1–4 (2013)

    Article  CAS  Google Scholar 

  17. M. Islam, S. Adhikari, S. Pramanick, S. Chatterjee, A. Karmakar, Remarkable effects of dopant valency–a comparative study of CaBaCo3.96Cr0.04O7 and CaBaCo3.96Ni0.04O7. J. Magn. Magn. Mater. 529, 167847 (2021)

    Article  CAS  Google Scholar 

  18. T. Sarkar, M.M. Seikh, V. Pralong, V. Caignaert, B. Raveau, Spectacular switching from ferrimagnetism to antiferromagnetism by zinc doping in “114” orthorhombic CaBaCo4O7. Appl. Phys. Lett. 100(23), 232401 (2012)

    Article  Google Scholar 

  19. M.M. Seikh, A.K. Kundu, V. Caignaert, B. Raveau, Gigantic effect of iron doping upon magnetism in the «114» magnetoelectric CaBaCo4O7. J. Alloys Compd. 656, 166–171 (2016)

    Article  CAS  Google Scholar 

  20. S.K. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanopart. Res. 22(9), 1–10 (2020)

    Article  Google Scholar 

  21. T. Sarkar, M.M. Seikh, V. Pralong, V. Caignaert, B. Raveau, Magnetism of the “114” orthorhombic charge ordered CaBaCo4O7 doped with Zn or Ga: a spectacular valency effect. J. Mater. Chem. 22(34), 18043–18050 (2012)

    Article  CAS  Google Scholar 

  22. R. Oda, R. Kajihara, K. Nishina, M. Akaki, H. Kuroe, H. Kuwahara, Impurity substitution effect on magnetoelectric properties of CaBaCo4O7 crystals. Phys. Procedia 75, 303–308 (2015)

    Article  CAS  Google Scholar 

  23. M.M. Seikh, V. Pralong, V. Caignaert, B. Raveau, Local melting of charge ordering in CaBaCo4O7 by Sr-doping. Z. Anorg. Allg. Chem. 640(6), 1141–1146 (2014)

    Article  CAS  Google Scholar 

  24. S.K. Yu, C. Dhanasekhar, V. Adyam, S.D. Jones, M.K.L. Man, J. Madeo, E.L. Wong, T. Harada, M.B.M. Krishna, K.M. Dani, D. Talbayev, Terahertz-frequency magnetoelectric effect in Ni-doped CaBaCo4O7. Phys. Rev. B. 96(9), 094421 (2017)

    Article  Google Scholar 

  25. V. Caignaert, V. Pralong, V. Hardy, C. Ritter, B. Raveau, Magnetic structure of CaBaCo4O7: lifting of geometrical frustration towards ferrimagnetism. Phys. Rev. B. 81(9), 094417 (2010)

    Article  Google Scholar 

  26. J.Y. Hu, X.C. Kan, Z. Chen, G.H. Zheng, Y.Q. Ma, The magnetic, thermal transport properties, magnetothermal effect and critical behavior of Co3Sn2S2 single crystal. J. Am. Ceram. Soc. 105(7), 4827–4839 (2022)

    Article  CAS  Google Scholar 

  27. H. Han, D. Menzel, W. Liu, L.S. Ling, H.F. Du, L. Pi, C.J. Zhang, L. Zhang, Y.H. Zhang, Scaling of the magnetic entropy change in skyrmion material Fe0.5Co0.5Si. Mater. Res. Bull. 94, 500–505 (2017)

    Article  CAS  Google Scholar 

  28. J.W. Xu, X.Q. Zheng, S.X. Yang, L. Xi, J.Y. Zhang, Y.F. Wu, S.G. Wang, J. Liu, L.C. Liu, Z.Y. Xu, B.G. Shen, Giant low field magnetocaloric effect in TmCoSi and TmCuSi compounds. J. Alloy Compd. 843, 155930 (2020)

    Article  CAS  Google Scholar 

  29. J.K. Zhao, X.S. Liu, X.C. Kan, C.C. Liu, W. Wang, J.Y. Hu, Q.R. Lv, J.W. Huang, M. Shazeda, Investigating the structural, magnetic, magnetocaloric and critical behavior of Mg0.35Zn0.65Fe2O4 ferrite. Ceram. Int. 47(6), 7906–7917 (2021)

    Article  CAS  Google Scholar 

  30. J.W. Li, J.Y. Law, H. Ma, A. He, Q.K. Man, H. Men, J.T. Huo, C.T. Tang, X.M. Wang, R.W. Li, Magnetocaloric effect in Fe–Tm–B–Nb metallic glasses near room temperature. J. Non-Cryst. Solids 425, 114–117 (2015)

    Article  CAS  Google Scholar 

  31. D.L. Hou, Y. Bai, J. Xu, G.D. Tang, X.F. Nie, Magnetic entropy change in La0.67-xCa0.33MnO3. J. Alloys Compd. 384(1–2), 62–66 (2004)

    Article  CAS  Google Scholar 

  32. V. Franco, J.S. Blázquez, A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl. Phys. Lett. 89(22), 222512 (2006)

    Article  Google Scholar 

  33. V. Franco, A. Conde, J.M. Romero-Enrique, J.S. Blazquez, A universal curve for the magnetocaloric effect: an analysis based on scaling relations. J. Phys. Condens. Mat. 20(28), 285207 (2008)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. U19A2093), the Key Projects of Natural Science Research of Higher Education Institutions of Anhui Province (Grant No. KJ2021A0975), and the open fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in Conceptualization, Methodology, Software, Validation, Investigation, Data Curation, Writing—Review and Editing, and Visualization. All authors wrote the first draft of the manuscript. All authors edited the manuscript and approved the final version.

Corresponding authors

Correspondence to G. H. Zheng or Y. Q. Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, C.L., Yun, Z.Q., Hu, J.Y. et al. Magnetic entropy change CaBaCo4O7 compound by Al and Ni substitution. J Mater Sci: Mater Electron 33, 26881–26891 (2022). https://doi.org/10.1007/s10854-022-09353-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09353-9

Navigation