Skip to main content
Log in

Polymer-multiferroics composite-based sustainable triboelectric energy harvester

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroics particles with the chemical formula of FeTiVO6 (FTVO) were synthesized using a solid-state reaction and blended with PDMS to obtain flexible composites. The FTVO particles crystallize in orthorhombic symmetry, and the multiferroic nature was confirmed using room temperature M-H and P-E hysteresis loops. A triboelectric nanogenerator (TENG) device was prepared using the composite at different wt% of FTVO-PDMS as a triboelectric layer. To enhance the output performance of TENG, microroughness composites were prepared following a cost-effective route. The 5 wt% of FTVO in the PDMS composite-based device delivered a higher electrical output of 110 V, 0.8 µA, and power of 65 µW at 108 Ω. The demonstration of charging capacitors confirms that the TENG can act as a sustainable power source. The long-term stability of the device output confirms that fabricated TENG can be utilized as self-powered sensors. Humidity is a factor that limits the performance of the TENG. The packing of the TENG could solve this problem by stopping the interaction of triboelectric layers with moisture and humidity. Hence, demonstration of the packed TENG under harsh conditions such as inside the water tub and at varying humidity levels was carried out to confirm the stability of the output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are provided in this article.

References

  1. T. Li, P.S. Lee, Small Struct. 3, 2100128 (2022)

    Article  CAS  Google Scholar 

  2. T. Ahmad, D. Zhang, Energy Rep. 6, 1973–1991 (2020)

    Article  Google Scholar 

  3. G. Grancini, M.K. Nazeeruddin, Nat. Rev. Mater. 4, 4–22 (2019)

    Article  CAS  Google Scholar 

  4. S. Panda, S. Hajra, H. Jeong, B.K. Panigrahi, P. Pakawanit, D. Dubal, S. Hong, H.J. Kim, Nano Energy 102, 107682 (2022)

    Article  CAS  Google Scholar 

  5. Z. Yang, S. Zhou, J. Zu, D. Inman, Joule 2, 642–697 (2018)

    Article  CAS  Google Scholar 

  6. Y. Yun, S. Jang, S. Cho, S.H. Lee, H.J. Hwang, D. Choi, Nano Energy 80, 105525 (2021)

    Article  CAS  Google Scholar 

  7. S. Hajra, Y. Oh, M. Sahu, K. Lee, H.-G. Kim, B.K. Panigrahi, K. Mistewicz, H.J. Kim, Sustain. Energy Fuels 5, 6049–6058 (2021)

    Article  CAS  Google Scholar 

  8. S. Hajra, M. Sahu, R. Sahu, A.M. Padhan, P. Alagarsamy, H.-G. Kim, H. Lee, S. Oh, Y. Yamauchi, H.J. Kim, Nano Energy 98, 107253 (2022)

    Article  CAS  Google Scholar 

  9. S. Hajra, M. Sahu, A.M. Padhan, J. Swain, B.K. Panigrahi, H.-G. Kim, S.-W. Bang, S. Park, R. Sahu, H.J. Kim, J. Mater. Chem. C 9, 17319–17330 (2021)

    Article  CAS  Google Scholar 

  10. S. Panda, S. Hajra, K. Mistewicz, P. In-na, M. Sahu, P.M. Rajaitha, H.J. Kim, Nano Energy 100, 107514 (2022)

    Article  CAS  Google Scholar 

  11. F.-R. Fan, Z.-Q. Tian, Z.Lin Wang, Nano Energy 1, 328–334 (2012)

    Article  CAS  Google Scholar 

  12. A. Ahmed, I. Hassan, I.M. Mosa, E. Elsanadidy, G.S. Phadke, M.F. El-Kady, J.F. Rusling, P.R. Selvaganapathy, R.B. Kaner, Nano Energy 60, 17–25 (2019)

    Article  CAS  Google Scholar 

  13. X.-S. Zhang, M. Han, B. Kim, J.-F. Bao, J. Brugger, H. Zhang, Nano Energy 47, 410–426 (2018)

    Article  CAS  Google Scholar 

  14. Y.Y. Ke, T.M. Chou, Z.H. Lin, ECS Trans. 72, 53–57 (2016)

    Article  CAS  Google Scholar 

  15. Y. Li, G. Li, P. Zhang, H. Zhang, C. Ren, X. Shi, H. Cai, Y. Zhang, Y. Wang, Z. Guo, H. Li, G. Ding, H. Cai, Z. Yang, C. Zhang, Z.L. Wang, Adv. Energy Mater. 11, 2003921 (2021)

    Article  CAS  Google Scholar 

  16. C. Huang, G. Chen, A. Nashalian, J. Chen, Nanoscale 13, 2065–2081 (2021)

    Article  CAS  Google Scholar 

  17. M. Sahu, V. Vivekananthan, S. Hajra, D.K. Khatua, S.-J. Kim, Appl. Mater. Today 22, 100900 (2021)

    Article  Google Scholar 

  18. X.-S. Zhang, M.-D. Han, R.-X. Wang, B. Meng, F.-Y. Zhu, X.-M. Sun, W. Hu, W. Wang, Z.-H. Li, H.-X. Zhang, Nano Energy 4, 123–131 (2014)

    Article  CAS  Google Scholar 

  19. X. Cheng, Z. Song, L. Miao, H. Guo, Z. Su, Y. Song, H.-X. Zhang, J. Microelectromech. Syst. 27, 106–112 (2017)

    Article  Google Scholar 

  20. X.-S. Zhang, M.-D. Han, R.-X. Wang, F.-Y. Zhu, Z.-H. Li, W. Wang, H.-X. Zhang, Nano Lett. 13, 1168–1172 (2013)

    Article  CAS  Google Scholar 

  21. Y.H. Kwon, S.-H. Shin, J.-Y. Jung, J. Nah, Nanotechnology 27, 205401 (2016)

    Article  Google Scholar 

  22. S. Hajra, A.M. Padhan, M. Sahu, P. Alagarsamy, K. Lee, H.J. Kim, Nano Energy 89, 106316 (2021)

    Article  CAS  Google Scholar 

  23. M. Sahu, R.N.P. Choudhary, S.K. Das, S. Otta, B.K. Roul, J. Mater. Sci.: Mater. Electron. 28, 15676–15684 (2017)

    CAS  Google Scholar 

  24. S. Sriphan, N. Vittayakorn, Smart Mater. Struct. 27, 105026 (2018)

    Article  Google Scholar 

  25. H.J. Hwang, Y. Lee, C. Lee, Y. Nam, J. Park, D. Choi, D. Kim, Micromachines 9, 656 (2018)

    Article  Google Scholar 

  26. D. Jang, Y. Kim, T.Y. Kim, K. Koh, U. Jeong, J. Cho, Nano Energy 20, 283–293 (2016)

    Article  CAS  Google Scholar 

  27. D. Kim, S. Lee, Y. Ko, C.H. Kwon, J. Cho, Nano Energy 44, 228–239 (2018)

    Article  CAS  Google Scholar 

  28. Q. Guan, X. Lu, Y. Chen, H. Zhang, Y. Zheng, R.E. Neisiany, Z. You, Adv. Mater. 34, 2204543 (2022)

    Article  CAS  Google Scholar 

  29. M. Li, H.-W. Lu, S.-W. Wang, R.-P. Li, J.-Y. Chen, W.-S. Chuang, F.-S. Yang, Y.-F. Lin, C.-Y. Chen, Y.-C. Lai, Nat. Commun. 13, 938 (2022)

    Article  CAS  Google Scholar 

  30. Y. Xiao, B. Xu, Q. Bao, Y. Lam, Polymers 14, 3029 (2022)

    Article  CAS  Google Scholar 

  31. B. Li, H. Liu, Y. Sun, Y. Cao, Y. Guo, J. Mater. Sci.: Mater. Electron. 33, 5335–5340 (2022)

    CAS  Google Scholar 

  32. N. Bhalla, N. Ingle, H. Patel, A. Jayaprakash, S.V. Patri, A. Kaushik, D. Haranath, Arab. J. Chem. 15, 103862 (2022)

    Article  CAS  Google Scholar 

  33. P. Manickam, S.A. Mariappan, S.M. Murugesan, S. Hansda, A. Kaushik, R. Shinde, S.P. Thipperudraswamy, Biosensors 12, 562 (2022)

    Article  CAS  Google Scholar 

  34. Y.-H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A. Fraile-Rodríguez, A. Scholl, S.X. Wang, R. Ramesh, Nat. Mater. 7, 478–482 (2008)

    Article  CAS  Google Scholar 

  35. R. Hochleitner, E. Schmidbauer, J. Electroceram. 29, 240–249 (2012)

    Article  Google Scholar 

  36. F. Zhou, S. Kotru, R.K. Pandey, Mater. Lett. 57, 2104–2109 (2003)

    Article  CAS  Google Scholar 

  37. P. Sharma, S. Hajra, S. Sahoo, P.K. Rout, R.N.P. Choudhary, Process. Appl. Ceram. 11, 171–176 (2017)

    Article  CAS  Google Scholar 

  38. S. Hajra, S. Sahoo, M. De, P.K. Rout, H.S. Tewari, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 29, 1463–1472 (2018)

    CAS  Google Scholar 

  39. S. Divya, K. Jeyadheepan, J. Hemalatha, J. Magn. Magn. Mater. 492, 165689 (2019)

    Article  CAS  Google Scholar 

  40. P. Gupta, P.K. Mahapatra, R.N.P. Choudhary, Cryst. Res. Technol. 53, 1800045 (2018)

    Article  Google Scholar 

  41. X. Zhang, Q. Zhao, Z. Cai, J. Pan, Metals 10, 141 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT of Korea (2021R1C1C1011588) and the DGIST R&D Program (22-RT-01; 22-SENS-01). The authors also would like to thank the DGIST Undergraduate Group Research Program (UGRP) Grant (2022020012).

Author information

Authors and Affiliations

Authors

Contributions

YO contributed to investigation and formal analysis. SH contributed to conceptualization and writing-original draft. SD contributed to formal analysis. SP contributed to data curation and investigation. HS and WO contributed to data curation. JL contributed to visualization. THO contributed to writing: review and editing. PLD contributed to investigation. HJK contributed to supervision, funding acquisition, and writing: review and editing.

Corresponding author

Correspondence to Hoe Joon Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1117.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Y., Hajra, S., Divya, S. et al. Polymer-multiferroics composite-based sustainable triboelectric energy harvester. J Mater Sci: Mater Electron 33, 26852–26860 (2022). https://doi.org/10.1007/s10854-022-09350-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09350-y

Navigation