Skip to main content
Log in

Highly transparent PZT capacitors on glass obtained by layer transfer process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transparent ITO/PZT/ITO capacitors were fabricated on 200 mm glass substrate. The PZT films of 1 µm and 2 µm thickness were first grown on platinized Si wafer by sol–gel method, and then transferred onto glass substrate together with ITO electrodes following an innovative process. The obtained PZT based stacks on glass show an average transmission of about 70% in the visible range. PZT films keep their preferred (100) orientation after transfer process. The capacitors exhibit ferroelectric, dielectric and piezoelectric properties comparable to standard non-transparent PZT films with metal electrodes. Transverse piezoelectric coefficient e31,f as high as 16 C/m2 was measured for both PZT film thicknesses. This proof of concept opens the way to the fabrication of transparent piezoelectric actuators on glass for high performances haptic devices, as well as for other emerging applications like self-cleaning or functionalization of smart windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. P. Muralt, Recent progress in materials issues for piezoelectric MEMS. J. Am. Ceram. Soc. 91, 1385–1396 (2008). https://doi.org/10.1111/j.1551-2916.2008.02421.x

    Article  CAS  Google Scholar 

  2. C.B. Eom, S. Trolier-McKinstry, Thin-film piezoelectric MEMS. MRS Bull. 37, 1007–1017 (2012). https://doi.org/10.1557/mrs.2012.273

    Article  CAS  Google Scholar 

  3. Yole Développement, Piezoelectric devices: from bulk to thin-film (Yole DÉVELOPPEMENT, 2019), https://www.slideshare.net/Yole_Developpement/piezoelectric-devices-from-bulk-to-thinfilm-2019-report-by-yole-dveloppement

  4. H. Chen, S. Mirg, M. Osman, S. Agrawal, J. Cai, R. Biskowitz, J. Minotto, S. Kothapalli, A high sensitivity transparent ultrasound transducer based on PMN-PT for ultrasound and photoacoustic imaging. IEEE Sens. Lett. 5, 1–4 (2021). https://doi.org/10.1109/LSENS.2021.3122097

    Article  CAS  Google Scholar 

  5. G. Thalhammer, C. McDougall, M.P. MacDonald, M. Ritsch-Marte, Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging. Lab. Chip 16, 1523–1532 (2016). https://doi.org/10.1039/C6LC00182C

    Article  CAS  Google Scholar 

  6. R. Manwar, K. Kratkiewicz, K. Avanaki, Overview of ultrasound detection technologies for photoacoustic imaging. Micromachines 11(7), 692 (2020). https://doi.org/10.3390/mi11070692

    Article  Google Scholar 

  7. S. Glinsek, M. AymenMahjoub, M. Ruppin, T. Schenck, N. Godard, S. Girod, J. Chemin, R. Leturcq, N. Valle, S. Klein, C. Chappaz, E. Defay, Fully transparent friction-modulation haptic device based on piezoelectric thin film. Adv. Funct. Mater. 30, 2003539 (2020). https://doi.org/10.1002/adfm.202003539

    Article  CAS  Google Scholar 

  8. H. Hua, Y. Chen, Y. Tao, D. Qi, Y. Li, A highly transparent haptic device with an extremely low driving voltage based on piezoelectric PZT films on glass. Sens. Actuators A 335, 113396 (2022). https://doi.org/10.1016/j.sna.2022.113396

    Article  CAS  Google Scholar 

  9. M. Shehzad, S. Wang, Y. Wang, Flexible and transparent piezoelectric loudspeaker. Npj Flex. Electron. 5, 24 (2021). https://doi.org/10.1038/s41528-021-00121-z

    Article  Google Scholar 

  10. I. Boerasu, L. Pintilie, M. Pereira, M.I. Vasilevskiy, M.J.M. Gomes, Competition between ferroelectric and semiconductor properties in Pb(Zr0.65Ti0.35)O3 thin films deposited by sol–gel. J. Appl. Phys. 93, 4776–4783 (2003). https://doi.org/10.1063/1.1562009

    Article  CAS  Google Scholar 

  11. L. Song, S. Glinsek, E. Defay, Toward low-temperature processing of lead zirconate titanate thin films: advances, strategies, and applications. Appl. Phys. Rev. 8, 041315 (2021). https://doi.org/10.1063/5.0054004

    Article  CAS  Google Scholar 

  12. K.K. Uprety, L.E. Ocola, O. Auciello, Growth and characterization of transparent Pb(Zr, Ti)O3 capacitor on glass substrate. J. Appl. Phys. Lett. 102, 084107 (2007). https://doi.org/10.1063/1.2785027

    Article  CAS  Google Scholar 

  13. V. Zardetto, T.M. Brown, A. Reale, A.D. Carlo, Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J. Polym. Sci. Part B Polym. Phys. 49, 638–648 (2011). https://doi.org/10.1002/polb.22227

    Article  CAS  Google Scholar 

  14. H. Kim, C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices. J. Appl. Phys. 86, 6451–6461 (1999). https://doi.org/10.1063/1.371708

    Article  CAS  Google Scholar 

  15. Z.D. Wang, Z.Q. Lai, Z.G. Hu, Low-temperature preparation and characterization of the PZT ferroelectric thin films sputtered on FTO glass substrate. J. Alloys Comp. 583, 452–454 (2014). https://doi.org/10.1016/j.jallcom.2013.08.197

    Article  CAS  Google Scholar 

  16. T.D. Cheng, N.J. Zhou, P. Li, Ferroelectric and photoelectricity properties of (Pb0.52Zr0.48)TiO3 thin films fabricated on FTO glass substrate. J. Mater. Sci. Mater. Electron. 26, 7104–7108 (2015). https://doi.org/10.1007/s10854-015-3332-5

    Article  CAS  Google Scholar 

  17. X.W. Wang, L.Y. Sun, X.E. Wang, X. Shi, Y.L. Peng, Y.C. Hu, X. Guo, Y.Y. Zhang, Y.L. Guo, W.Y. Zhao, E.Z. Shao, A facile hot plate annealing at low temperature of Pb(Zr0.52Ti0.48)O3 thin films by sol–gel method and their ferroelectric properties. J. Mater. Sci. Mater. Electron. 29, 5660–5667 (2018). https://doi.org/10.1007/s10854-018-8535-0

    Article  CAS  Google Scholar 

  18. K. Ueda, S.-H. Kweon, H. Hida, Y. Mukouyama, I. Kanno, Transparent piezoelectric thin-film devices: Pb(Zr, Ti)O3 thin films on glass substrates. Sens. Actuators Phys. 327, 112786 (2021). https://doi.org/10.1016/j.sna.2021.112786

    Article  CAS  Google Scholar 

  19. D. Sette, S. Girod, R. Leturcq, S. Glinsek, E. Defay, Transparent ferroelectric capacitors on glass. Micromachines 8, 313–318 (2017). https://doi.org/10.3390/mi8100313

    Article  Google Scholar 

  20. S. Fanget, F. Casset, S. Nicolas, C. Dieppedale, M. Allain, B. Desloges, G. Le Rhun, Piezoelectric actuators, next driver for MEMS market? TechConnect Briefs 4, 64–67 (2017)

    Google Scholar 

  21. J. Abergel, M. Allain, H. Michaud, M. Cueff, T. Ricart, C. Dieppedale, G. Le Rhun, D. Faralli, S. Fanget, E. Defay, Optimized gradient-free PZT thin films for micro-actuators. IEEE Int. Ultrason. Symp., IUS 5661902 (2012). https://doi.org/10.1109/ULTSYM.2012.0243

    Article  Google Scholar 

  22. G. Le Rhun, C. Dieppedale, B. Wagué, C. Querne, G. Enyedi, P. Perreau, P. Montméat, C. Licitra, S. Fanget, Transparent PZT MIM capacitors on glass for piezoelectric transducer applications. In 20th International Conference on Solid-State Sensors, Actuators and Microsystems Eurosensors XXXIII (Transducers Eurosensors XXXIII) 1800–1802 (2019). Doi:https://doi.org/10.1109/TRANSDUCERS.2019.8808241

  23. F. Casset, G. Le Rhun, B. Neff, B. Desloges, C. Dieppedale, S. Fanget, Low voltage haptic slider built using solgel thin-film PZT actuators reported on glass. Proc. IEEE Micro Electro Mech. Syst. (2019). https://doi.org/10.1109/MEMSYS.2019.8870715

    Article  Google Scholar 

  24. M. Cueff, M. Allain, J. Abergel, G. Le Rhun, M. Aïd, E. Defay, D. Faralli, Influence of the crystallographic orientation of Pb(Zr,Ti)O3 films on the transverse piezoelectric coefficient d31. In IEEE International Ultrasonics Symposium 1948–1951 (2011). Doi: https://doi.org/10.1109/ULTSYM.2011.0485

  25. K. Prume, P. Muralt, F. Calame, T. Schmitz-Kempen, S. Tiedke, Extensive electromechanical characterization of PZT thin films for MEMS applications by electrical and mechanical excitation signals. J Electroceram. 19, 407–411 (2007). https://doi.org/10.1007/s10832-007-9065-y

    Article  CAS  Google Scholar 

  26. S. Sivaramakrishnan, P. Mardilovich, T. Schmitz-Kempen, S. Tiedke, Concurrent wafer-level measurement of longitudinal and transverse effective piezoelectric coefficients (d33, f and e31, f) by double beam laser interferometry. J. Appl. Phys. 123, 014103 (2018). https://doi.org/10.1063/1.5019568

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GLR, FP, BW and CD contributed to the study conception and design. All authors were involved in all or part of the material preparation, data collection and analysis. The first draft of the manuscript was written by GLR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gwenael Le Rhun.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Rhun, G., Pavageau, F., Wagué, B. et al. Highly transparent PZT capacitors on glass obtained by layer transfer process. J Mater Sci: Mater Electron 33, 26825–26833 (2022). https://doi.org/10.1007/s10854-022-09347-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09347-7

Navigation