Skip to main content
Log in

Growth of potassium iodide-doped L-alanine nonlinear optical single crystals: investigation of physico-chemical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The conventional slow evaporation solution growth technique was used to grow potassium iodide-doped L-Alanine single crystals (PI-LA). Single crystal x-ray diffraction analysis revealed the lattice parameters of the grown crystal. UV–Visible-NIR spectral analysis was carried out to analyze the linear optical properties of the crystal. The Vickers microhardness test was performed on the grown PI-LA single crystal to study the mechanical stability. The fluorescence property of the grown crystal was investigated, resultant it emits blue light. The open and closed aperture curves of Z-scan analysis were used to estimate the third-order nonlinear refractive index and third-order absorption coefficient, respectively. It revealed that the material has reverse saturable absorption. The second harmonic generation measurement has been carried out using the Kurtz-Perry powder technique. The results of various investigations, the PI-LA crystals could be useful for nonlinear optical frequency conversion device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Manuscript data will be available on request.

References

  1. M. Lydia Caroline, R. Sankar, R.M. Indirani, S. Vasudevan, Growth, optical, thermal, and dielectric studies of an amino acid organic nonlinear optical material: L-Alanine. Mater. Chem. Phys. 114, 490–494 (2009)

    Article  Google Scholar 

  2. S. Velayutham, M. Selvapandiyan, Effect of yttrium ion on the properties of tri ethyl ammonium picrate single crystals. Heliyon 5, e02091 (2019)

    Article  CAS  Google Scholar 

  3. J. Arumugam, N. Suresh, M. Selvapandiyan, S. Sudhakar, M. Prasath, Effect of NaCl on the properties of sulphamic acid single crystals. Heliyon 5, e01988 (2019)

    Article  CAS  Google Scholar 

  4. N. Suresh, M. Selvapandiyan, P. Sakthivel, K. Loganathan, Structural, optical, thermal, and magnetic properties of strontium nitrate doped l-Alanine crystal. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.165336

    Article  Google Scholar 

  5. G. Marudhu et al., Optical, thermal and mechanical studies on nonlinear optical material diglycine barium chloride monohydrate (DGBCM) single crystal. J. Nonlinear Opt. Phys. Mater. 22(04), 1350043 (2013)

    Article  Google Scholar 

  6. N. Zaitseva et al., Application of solution techniques for rapid growth of organic crystals. J. Cryst. Growth 314(1), 163–170 (2011)

    Article  CAS  Google Scholar 

  7. D.A. Fentaw, M.E. Peter, T. Abza, Synthesis and characterization of lanthanum chloride doped L-alanine maleate single crystals. J. Cryst. Growth 522, 1–4 (2019)

    Article  CAS  Google Scholar 

  8. X.J. Liu, Z.Y. Wang, D. Xu, X.Q. Wang, Y.Y. Song, W.T. Yu, W.F. Guo, Investigation of micro crystallization of L-arginine trifluoroacetate crystals. J. Alloys Compd. (2007). https://doi.org/10.1016/j.jallcom.2006.09.128

    Article  Google Scholar 

  9. P.M. Wankhade, G.G. Muley, Growth, morphology, optical, thermal, mechanical and electrical studies of a cesium chloride doped l-alanine single crystal. Chin. J. Phys. 55(6), 2181–2191 (2017)

    Article  CAS  Google Scholar 

  10. D. Jini, M. Aravind, L. Jothi Nirmal, S. Ajitha, Structural, optical, and biological properties of L-alanine single crystal by slow evaporation method. Mater. Today. (2021). https://doi.org/10.1016/j.matpr.2020.11.736

    Article  Google Scholar 

  11. S. Natarajan, S.M. Britto, E. Ramachandran, Growth, thermal, spectroscopic, and optical studies of L-aluminum maleate, a new organic nonlinear optical material. Cryst. Growth Des. 6(1), 137–140 (2006)

    Article  CAS  Google Scholar 

  12. Y.B. Rasal, M. Anis, M.D. Shirsat, S.S. Hussaini, Growth, structural, UV–visible, SHG, mechanical and dielectric studies of bis-thiourea zinc chloride doped KDP crystal for NLO device applications. Mater. Res. Innovat. 21(1), 45–49 (2017)

    Article  CAS  Google Scholar 

  13. K. Rajesh, B. Milton Boaz, P. Praveen Kumar, Growth and characterization of pure and doped L-alanine tartrate single crystals. J. Mater. (2013). https://doi.org/10.1155/2013/613092

    Article  Google Scholar 

  14. I.C. Ignatius, S. Rajathi, K. Kirubavathi, K. Selvaraju, Studies on growth andcharacterization of l-alanine strontium chloride trihydrate single crystals for opticalapplications. Optik 125, 4265–4269 (2014)

    Article  Google Scholar 

  15. D. Jananakumar, P. Mani, Growth and characterization of semiorganic crystal potassium hydrogen oxalate. J. Therm. Anal. Calorim. (2014). https://doi.org/10.1007/s10973-013-3183-3

    Article  Google Scholar 

  16. I.P. Bincy, R. Gopalakrishnan, Synthesis, growth and characterization of new organic crystal: 2-Aminopyridinium p-Toluene sulfonate for third order nonlinear optical applications. J. Cryst. Growth (2014). https://doi.org/10.1016/j.jcrysgro.2014.03.024

    Article  Google Scholar 

  17. A. Muthuraja, S. Kalainathan, A study on growth, optical, mechanical, and NLO properties of 2-mercaptobenzimidazole, 2-phenylbenzimidazole and 2-Hydroxy benzimidazole single crystals: a comparative investigation. Mater. Technol. 32(6), 335–348 (2017). https://doi.org/10.1080/10667857.2016.1235080

    Article  CAS  Google Scholar 

  18. E. Meyer, Z. Ver, Contribution to the knowledge of hardness and hardness testing. Dtsch. Ing. 52, 645 (1908)

    CAS  Google Scholar 

  19. E.M. Onitsch, Über die Mikrohärte der Metale. Mikroscopia 2, 131 (1947)

    Google Scholar 

  20. M. Hanneman, “Metall. Manchu” 23, 135–140 (1941)

    Google Scholar 

  21. J. John, P. Christuraj, K. Anitha, T. Balasubramanian, Bandgap enhancement on metal chelation: Growth and characterization of cobalt chelated glycine single crystals for optoelectronic applications Mater. Chem. Phys. 11, 284–287 (2009)

    Google Scholar 

  22. J.H. Westbrook, Report 58-RL-2033 of the G. E. Research Laboratory, (1958)

  23. N.J. Turro, Molecular Photochemistry (Benjamin, New York, 1965)

    Google Scholar 

  24. M. Nirosha, S. Kalainathan, S. Sarveswari, V. Vijayakumar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 123, 78–84 (2014)

    Article  CAS  Google Scholar 

  25. T. Masuda, Y. Nakano, Y. Takahashi, H. Ito, K. Okinaka, E. Kambe, H. Kuma, 6–3: distinguished paper: highly efficient fluorescent blue materials and their applications for top emission OLEDs. SID Symp. Dig. Tech. Pap. 49(1), 52–55 (2018). https://doi.org/10.1002/sdtp.12557

    Article  CAS  Google Scholar 

  26. S. Tamilselvan, M. Vimalan, I. Vetha Potheher, R. Jeyasekaran, F. Yogam, J.Madhavan “Generation of 532 nm laser radiation and phase-matching properties of organic nonlinear optical materials” Optik 125(1),164–169 (2014). https://doi.org/10.1016/j.ijleo.2013.06.024

  27. J.P. Dougherty, S.K. Kurtz, J. Appl. Crystallogr. 9, 145–158 (1976)

    Article  Google Scholar 

  28. J.M.S. Gnanaraj, M. Iniya Pratheepa, M. Lawrence, L-Lysine doped Oxalic acid single crystals -A potential phase matchable organic material for optical limiting applications. Opt. Laser Technol. (2018). https://doi.org/10.1016/j.optlastec.2018.05.045

    Article  Google Scholar 

  29. P. Karuppasamy, V. Sivasubramani, M. Senthil Pandian, P. Ramasamy, Growth and characterization of semi-organic third order nonlinear optical (NLO) potassium 3,5dinitrobenzoate (KDNB) single crystal. RSC Adv. (2016). https://doi.org/10.1039/C6RA21590D

    Article  Google Scholar 

  30. P. Karuppasamy, M.S. Pandian, P. Ramasamy, S. Verma, Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications. Opt. Mater. (2018). https://doi.org/10.1016/j.optmat.2018.03.041

    Article  Google Scholar 

Download references

Acknowledgements

The authors G. Satheesh Kumar and J. Martin Sam Gnanaraj thank, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, for providing a Post-Doctoral Fellowship. The instrumentation facility is extended by Archbishop Casimir Instrumentation Centre, St. Joseph’s College (Autonomous), Tiruchirappalli, Indian Institute of Technology, Madras.

Funding

This research work did not receive any specific grant from funding agencies in the public commercial or not–for–profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

G. Satheesh Kumar: Investigation, Methodology, Writing—original draft. J. Martin Sam Gnanaraj: Methodology, Conceptualization, Data curation. V. Kathiravan: Writing—review & editing. P.Karuppasamy: Review & editing. M. Senthil Pandian: Investigation, Methodology. P. Ramasamy: Investigation, Methodology.

Corresponding author

Correspondence to G. Satheesh Kumar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G.S., Gnanaraj, J.M.S., Kathiravan, V. et al. Growth of potassium iodide-doped L-alanine nonlinear optical single crystals: investigation of physico-chemical properties. J Mater Sci: Mater Electron 33, 26764–26774 (2022). https://doi.org/10.1007/s10854-022-09342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09342-y

Navigation