Skip to main content
Log in

Photocatalytic activity of prepared ZnO/CuO nanocomposites and kinetic degradation study of methylene blue

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this manuscript, ZnO/CuO nanocomposites with different concentrations of CuO were synthesized using a simple hydrothermal method. The x-ray diffraction (XRD), X-ray fluorescence (XRF), atomic force microscope (AFM), UV–Vis spectrophotometer, and fluorescence spectrometers were used to study the physicochemical properties of nanocomposites. The crystallite size demonstrates a gradual growth ranging from 31 to 42 nm due to incorporating different contents of CuO with ZnO nanoparticles. The mean square roughness (Rms) decreased from 4.3 to 1.6 nm due to incorporating 10 wt% of CuO nanoparticles with ZnO nanoparticles, while the average particle size increased. The bandgap energy reduced gradually from 3.36 to 3.1 eV depending on the CuO nanoparticles' incorporation ratio. The kinetic degradation of methylene blue (MB) was investigated deeply under different conditions by analyzing and fitting the absorbance peaks of MB during degradation. Interestingly, the photocatalytic efficiency of pure ZnO nanoparticles during 90 min is 74.5%. ZnO nanocomposite with 10 wt% of CuO demonstrated a high dye degradation of about 97.15%. The FTIR analysis reveals that the C=N bond has a rapid dissolution compared to other bonds of MB during the photocatalyst process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data will be made available upon request from the corresponding author due to privacy or other restrictions.

References

  1. M.-S. Kim et al., Effects of Al concentration on structural and optical properties of Al-doped ZnO thin films. Bull. Korean Chem. Soc. 33(4), 1235–1241 (2012)

    Article  CAS  Google Scholar 

  2. K. Intarasuwan, P. Amornpitoksuk, S. Suwanboon, Effect of the mixing rate on the morphology and photocatalytic activity of ZnO powders prepared by a precipitation method. Adv. Powder Technol. 24(6), 999–1005 (2013)

    Article  CAS  Google Scholar 

  3. M. Nami, S. Sheibani, F. Rashchi, Photocatalytic performance of coupled semiconductor ZnO–CuO nanocomposite coating prepared by a facile brass anodization process. Mater. Sci. Semicond. Process. 135, 106083 (2021)

    Article  CAS  Google Scholar 

  4. S. Selvinsimpson et al., Synergetic effect of Sn doped ZnO nanoparticles synthesized via ultrasonication technique and its photocatalytic and antibacterial activity. Environ. Res. 197, 111115 (2021)

    Article  CAS  Google Scholar 

  5. M.M. Alnuaimi, M. Rauf, S.S. Ashraf, Comparative decoloration study of Neutral Red by different oxidative processes. Dyes Pigm. 72(3), 367–371 (2007)

    Article  CAS  Google Scholar 

  6. F. Alharbi et al., Sunlight activated S-scheme ZnO-CoTe binary photocatalyst for effective degradation of dye pollutants from wastewater. Surf.Interfaces 31, 101991 (2022)

    Article  CAS  Google Scholar 

  7. Y.-H. Chiu et al., Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 9(5), 430 (2019)

    Article  CAS  Google Scholar 

  8. A. Abdolhoseinzadeh, S. Sheibani, Enhanced photocatalytic performance of Cu2O nano-photocatalyst powder modified by ball milling and ZnO. Adv. Powder Technol. 31(1), 40–50 (2020)

    Article  CAS  Google Scholar 

  9. M. Pérez-González et al., Enhanced photocatalytic activity of TiO2-ZnO thin films deposited by dc reactive magnetron sputtering. Ceram. Int. 43(12), 8831–8838 (2017)

    Article  Google Scholar 

  10. Y. Bai et al., Enhanced piezocatalytic performance of ZnO nanosheet microspheres by enriching the surface oxygen vacancies. J. Mater. Sci. 55(29), 14112–14124 (2020)

    Article  CAS  Google Scholar 

  11. S. Wang et al., Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Catal. B 243, 19–26 (2019)

    Article  CAS  Google Scholar 

  12. T. Yildiz, H.C. Yatmaz, K. Öztürk, Anatase TiO2 powder immobilized on reticulated Al2O3 ceramics as a photocatalyst for degradation of RO16 azo dye. Ceram. Int. 46(7), 8651–8657 (2020)

    Article  CAS  Google Scholar 

  13. G.K. Weldegebrieal, Photocatalytic and antibacterial activityof CuO nanoparticles biosynthesized using Verbascum thapsus leaves extract. Optik 204, 164230 (2020)

    Article  CAS  Google Scholar 

  14. M. Mondal, H. Dutta, S. Pradhan, Enhanced photocatalysis performance of mechano-synthesized V2O5–TiO2 nanocomposite for wastewater treatment: correlation of structure with photocatalytic performance. Mater. Chem. Phys. 248, 122947 (2020)

    Article  CAS  Google Scholar 

  15. Z. Liu et al., Interfacing CdS particles on Ni foam as a three-dimensional monolithic photocatalyst for efficient visible-light-driven H2 evolution. Int. J. Hydrogen Energy 45(56), 31678–31688 (2020)

    Article  CAS  Google Scholar 

  16. T.M. Dawoud et al., Photocatalytic degradation of an organic dye using Ag doped ZrO2 nanoparticles: milk powder facilitated eco-friendly synthesis. J.King Saud Uni.-Sci. 32(3), 1872–1878 (2020)

    Article  Google Scholar 

  17. C. Sarkar, S.K. Dolui, Synthesis of copper oxide/reduced graphene oxide nanocomposite and its enhanced catalytic activity towards reduction of 4-nitrophenol. RSC Adv. 5(75), 60763–60769 (2015)

    Article  CAS  Google Scholar 

  18. A. Menazea, N.S. Awwad, Pulsed Nd: YAG laser deposition-assisted synthesis of silver/copper oxide nanocomposite thin film for 4-nitrophenol reduction. Radiat. Phys. Chem. 177, 109112 (2020)

    Article  CAS  Google Scholar 

  19. T. Chang et al., Enhanced photocatalytic activity of ZnO/CuO nanocomposites synthesized by hydrothermal method. Nano-Micro Lett. 5(3), 163–168 (2013)

    Article  Google Scholar 

  20. M.S. Nadeem et al., Energy-levels well-matched direct Z-scheme ZnNiNdO/CdS heterojunction for elimination of diverse pollutants from wastewater and microbial disinfection. Environ. Sci.Pollut. Res. 29, 1–18 (2022)

    Article  Google Scholar 

  21. Y. Zhang et al., Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity. J.Phys. Chem. C 114(11), 5073–5079 (2010)

    Article  CAS  Google Scholar 

  22. S. Das, V.C. Srivastava, An overview of the synthesis of CuO-ZnO nanocomposite for environmental and other applications. Nanotechnol. Rev. 7(3), 267–282 (2018)

    Article  CAS  Google Scholar 

  23. C. Xu et al., Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. J. Hazard. Mater. 176(1–3), 807–813 (2010)

    Article  CAS  Google Scholar 

  24. N.G. Elfadill et al., Ultraviolet–visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate. Mater. Chem. Phys. 156, 54–60 (2015)

    Article  CAS  Google Scholar 

  25. Z. He et al., Fabrication and photocatalytic property of ZnO/Cu2O core-shell nanocomposites. Mater. Lett. 184, 148–151 (2016)

    Article  CAS  Google Scholar 

  26. Y.-S. Chen et al., High performance Cu 2 O/ZnO core-shell nanorod arrays synthesized using a nanoimprint GaN template by the hydrothermal growth technique. Optical Materials Express 4(7), 1473–1486 (2014)

    Article  CAS  Google Scholar 

  27. C. Yang et al., Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO 2 nanocomposite due to the photosensitization synergetic effect of TiO 2 and P2ABSA. RSC Adv. 7(38), 23699–23708 (2017)

    Article  CAS  Google Scholar 

  28. Zhang, C., et al. Effect of synthesis conditions on the growth of ZnO nanorods via the solution deposition method. In International Conference on Power Electronics and Energy Engineering. Atlantis Press. 2015

  29. J. Yang et al., Effect of annealing temperature on the structure and optical properties of ZnO nanoparticles. J. Alloy. Compd. 477(1–2), 632–635 (2009)

    Article  CAS  Google Scholar 

  30. C.-H. Wu, J.-M. Chern, Kinetics of photocatalytic decomposition of methylene blue. Ind. Eng. Chem. Res. 45(19), 6450–6457 (2006)

    Article  CAS  Google Scholar 

  31. M. Kuru, H. Narsat, The effect of heat treatment temperature and Mg doping on structural and photocatalytic activity of ZnO thin films fabricated by RF magnetron co-sputtering technique. J. Mater. Sci.: Mater. Electron. 30(20), 18484–18495 (2019)

    CAS  Google Scholar 

  32. H. Kang et al., Structural, optical and electrical characterization of Ga-Mg co-doped ZnO transparent conductive films. Mater. Lett. 215, 102–105 (2018)

    Article  CAS  Google Scholar 

  33. H. Gnaser et al., Photocatalytic degradation of methylene blue on nanocrystalline TiO2: surface mass spectrometry of reaction intermediates. Int. J. Mass Spectrom. 245(1–3), 61–67 (2005)

    Article  CAS  Google Scholar 

  34. A. Houas et al., Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31(2), 145–157 (2001)

    Article  CAS  Google Scholar 

  35. D. Das et al., Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf., B 101, 430–433 (2013)

    Article  CAS  Google Scholar 

  36. Y. Chen et al., A comparative study of the microstructures and optical properties of Cu-and Ag-doped ZnO thin films. Physica B 404(20), 3645–3649 (2009)

    Article  CAS  Google Scholar 

  37. P. Jongnavakit et al., Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol–gel method. Appl. Surf. Sci. 258(20), 8192–8198 (2012)

    Article  CAS  Google Scholar 

  38. A.A. Al-Ghamdi et al., Semiconducting properties of Al doped ZnO thin films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 131, 512–517 (2014)

    Article  CAS  Google Scholar 

  39. A. Ahmad et al., Optical, structural, and morphological characterizations of synthesized (Cd–Ni) co-doped ZnO thin films. Appl. Phys. A 127(12), 1–12 (2021)

    Article  Google Scholar 

  40. S. Mustapha et al., Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci.: Nanosci. Nanotechnol. 10(4), 045013 (2019)

    Google Scholar 

  41. O. Lupan et al., Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256(6), 1895–1907 (2010)

    Article  CAS  Google Scholar 

  42. M. Alqadi et al., Influence of (Ag–Cu) co-doping on the optical, structural, electrical, and morphological properties of ZnO thin films. J. Sol-Gel Sci. Technol. 103, 1–16 (2022)

    Article  Google Scholar 

  43. K. Joshi et al., Band gap widening and narrowing in Cu-doped ZnO thin films. J. Alloy. Compd. 680, 252–258 (2016)

    Article  CAS  Google Scholar 

  44. M. Rajasekaran, A. Arunachalam, P. Kumaresan, Structural, morphological and optical characterization of Ti-doped ZnO nanorod thin film synthesized by spray pyrolysis technique. Mater. Res. Express 7(3), 036412 (2020)

    Article  CAS  Google Scholar 

  45. T.P. Rao et al., Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis. Physica B 405(9), 2226–2231 (2010)

    Article  CAS  Google Scholar 

  46. A. Migdadi et al., Structural and Optoelectronic Characterization of Synthesized Undoped CZTS and Cd-doped CZTS Thin Films. Indian J. Pure & Appl. Phys. 60(2), 138–149 (2022)

    Google Scholar 

  47. S.M. Mosavi, H. Kafashan, Physical properties of Cd-doped ZnS thin films. Superlattices Microstruct. 126, 139–149 (2019)

    Article  CAS  Google Scholar 

  48. A. Migdadi et al., Electrical and thermal characterizations of synthesized composite films based on polyethylene oxide (PEO) doped by aluminium chloride (AlCl3). Polym. Bull. (2022). https://doi.org/10.1007/s00289-022-04329-5

    Article  Google Scholar 

  49. A. Chauhan et al., Photocatalytic dye degradation and antimicrobial activities of Pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci. Rep. 10(1), 1–16 (2020)

    Article  Google Scholar 

  50. P.S. Sundaram et al., XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches. Physica B 595, 412342 (2020)

    Article  Google Scholar 

  51. L. de León-Gutiérrez et al., Some physical properties of Sn-doped CdO thin films prepared by chemical bath deposition. Mater. Lett. 60(29–30), 3866–3870 (2006)

    Article  Google Scholar 

  52. A.A. Ahmad et al., Computational and experimental characterizations of annealed Cu2ZnSnS4 thin films. Heliyon 8(1), e08683 (2022)

    Article  CAS  Google Scholar 

  53. A. Migdadi et al., Synthesis, optoelectronic and thermal characterization of PMMA-MWCNTs nanocomposite thin films incorporated by ZrO2 NPs. J. Mater. Sci.: Mater. Electron. 33(8), 5087–5104 (2022)

    CAS  Google Scholar 

  54. P. Norouzzadeh et al., Investigation of structural, morphological and optical characteristics of Mn substituted Al-doped ZnO NPs: a Urbach energy and Kramers-Kronig study. Optik 204, 164227 (2020)

    Article  CAS  Google Scholar 

  55. S. Aksoy et al., Effect of Sn dopants on the optical and electrical properties of ZnO films. Opt. Appl. 40(1), 7–14 (2010)

    CAS  Google Scholar 

  56. A. Migdadi et al., Investigation of structural, morphological, and optoelectronic properties of ZnO thin films with Sn–Ni as co-doping. Appl. Phys. A 128(9), 1–16 (2022)

    Article  Google Scholar 

  57. C. Xing et al., Band structure-controlled solid solution of Cd1-x ZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrogen Energy 31(14), 2018–2024 (2006)

    Article  CAS  Google Scholar 

  58. S. Osali et al., Structural and electro-optical properties of electrospun Cu-Doped ZnO thin films. Solid State Sci. 98, 106038 (2019)

    Article  CAS  Google Scholar 

  59. R. Udayabhaskar, B. Karthikeyan, Optical and phonon properties of ZnO: CuO mixed nanocomposite. J. Appl. Phys. 115(15), 154303 (2014)

    Article  Google Scholar 

  60. P. Velusamy et al., Modification of the photocatalytic activity of TiO2 by β-Cyclodextrin in decoloration of ethyl violet dye. J. Adv. Res. 5(1), 19–25 (2014)

    Article  CAS  Google Scholar 

  61. M. Faraz et al., Synthesis of samarium-doped zinc oxide nanoparticles with improved photocatalytic performance and recyclability under visible light irradiation. New J. Chem. 42(3), 2295–2305 (2018)

    Article  CAS  Google Scholar 

  62. T. Munawar et al., Zn0. 9Ce0. 05M0. 05O (M= Er, Y, V) nanocrystals: structural and energy bandgap engineering of ZnO for enhancing photocatalytic and antibacterial activity. Ceram. Int. 46(10), 14369–14383 (2020)

    Article  CAS  Google Scholar 

  63. N. Daneshvar et al., Removal of CI Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. J. Hazard. Mater. 143(1–2), 95–101 (2007)

    Article  CAS  Google Scholar 

  64. K. Karthik et al., Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere 287, 132081 (2022)

    Article  CAS  Google Scholar 

  65. A. Khalid et al., Effect of Cu doping on ZnO nanoparticles as a photocatalyst for the removal of organic wastewater. Bioinorg. Chem. Appl. 2022, 1–12 (2022)

    Article  Google Scholar 

  66. N. Razali, A. Abdullah, M. Haron, Synthesis of CuO and ZnO nanoparticles and CuO doped ZnO nanophotocatalysts. Adv. Mater. Res. 364, 402–407 (2012). (Trans Tech Publ)

    Article  CAS  Google Scholar 

  67. M. Mansournia, L. Ghaderi, CuO@ ZnO core-shell nanocomposites: novel hydrothermal synthesis and enhancement in photocatalytic property. J. Alloy. Compd. 691, 171–177 (2017)

    Article  CAS  Google Scholar 

  68. A. Acedo-Mendoza et al., Photodegradation of methylene blue and methyl orange with CuO supported on ZnO photocatalysts: the effect of copper loading and reaction temperature. Mater. Sci. Semicond. Process. 119, 105257 (2020)

    Article  CAS  Google Scholar 

  69. M.A. Rauf et al., Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chem. Eng. J. 157(2–3), 373–378 (2010)

    Article  CAS  Google Scholar 

  70. H.R. Pouretedal et al., Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J. Hazard. Mater. 162(2–3), 674–681 (2009)

    Article  CAS  Google Scholar 

  71. S. Senobari, A. Nezamzadeh-Ejhieh, A comprehensive study on the photocatalytic activity of coupled copper oxide-cadmium sulfide nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 196, 334–343 (2018)

    Article  CAS  Google Scholar 

  72. N. Micali et al., Mesoscopic structure of meso-tetrakis (4-sulfonatophenyl) porphine J-aggregates. J. Phys. Chem. B 104(25), 5897–5904 (2000)

    Article  CAS  Google Scholar 

  73. S. Gao, R. Cao, C. Yang, Dye–polyoxometalate composite films: Self-assembly, thermal and photochemical properties. J. Colloid Interface Sci. 324(1–2), 156–166 (2008)

    Article  CAS  Google Scholar 

  74. S. Das, P.V. Kamat, Can H-Aggregates serve as light-harvesting antennae? Triplet− Triplet energy transfer between excited aggregates and monomer thionine in aersol-OT solutions. J. Phys. Chem. B 103(1), 209–215 (1999)

    Article  CAS  Google Scholar 

  75. R. Ababneh et al., 1h nmr spectroscopy to investigate the kinetics and the mechanism of proton charge carriers ionization and transportation in hydrophilic/hydrophobic media: Methyl sulfonic acid as a protonic ion source in water/alcohol binary mixtures. J. Mol. Liq. 265, 621–628 (2018)

    Article  CAS  Google Scholar 

  76. A. Ogunlaja et al., Biodegradation of methylene blue as an evidence of synthetic dyes mineralization during textile effluent biotreatment by Acinetobacter pittii. Environ. Process. 7(3), 931–947 (2020)

    Article  CAS  Google Scholar 

  77. D. Zhang et al., Microbes in biological processes for municipal landfill leachate treatment: community, function and interaction. Int. Biodeterior. Biodegradation 113, 88–96 (2016)

    Article  CAS  Google Scholar 

  78. Z. Yu, S.S. Chuang, Probing methylene blue photocatalytic degradation by adsorbed ethanol with in situ IR. J. Phys. Chem. C 111(37), 13813–13820 (2007)

    Article  CAS  Google Scholar 

  79. F. Huang et al., Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma. Chem. Eng. J. 162(1), 250–256 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Deanship of Scientific Research at Jordan University of Science and Technology (JUST) in Jordan for the generous financial and technical support (Research #: 55/2020) and (Research #: 2021/0111). Our thanks to Prof. Ahmad A. Ahmad, Prof. M-Ali Al-Akhras, and Prof. Borhan Albiss for helping us use the Thin Films lab, the Biomedical Physics Labs, and the Center of Nanotechnology.

Funding

This research received a grant from the Deanship of Scientific Research at Jordan University of Science and Technology (JUST) in Jordan (Research #: 55/2020) and (Research #: 2021/0111).

Author information

Authors and Affiliations

Authors

Contributions

ABM took part in methodology, investigation, conceptualization, formal analysis, data curation, writing—original draft. MKA involved in funding acquisition & project administration. FYA took part in writing—review & editing, supervision. HMAl-K involved in resources and validation. WTB-H took part in methodology and investigation.

Corresponding author

Correspondence to A. B. Migdadi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 122 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migdadi, A.B., Alqadi, M.K., Alzoubi, F.Y. et al. Photocatalytic activity of prepared ZnO/CuO nanocomposites and kinetic degradation study of methylene blue. J Mater Sci: Mater Electron 33, 26744–26763 (2022). https://doi.org/10.1007/s10854-022-09341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09341-z

Navigation