Skip to main content
Log in

Confocal magnetron sputtering deposition of Cu/AZO bilayer structures: effect of Cu thickness on microstructural and optoelectronic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A promising research approach is currently oriented toward the investigation of multilayer films, consisting of the combination of metal elements and Al-doped ZnO (AZO) films for potential future applications. In this context, we focus on the preparation, characterization and film thickness effects on different properties of Cu/AZO bilayers. Hence, a multi-source RF magnetron sputtering deposition system in confocal configuration, under optimized conditions, was used to successfully deposit Cu/AZO bilayers on glass substrates with increasing Cu thickness, up to 13 nm, and a constant AZO thickness of 65 nm. The structural, morphological, electrical, optical and luminescent properties of all samples were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), UV–vis spectroscopy, Hall effect and photoluminescence (PL) techniques. The obtained results indicated that all the samples show a würtzite hexagonal structure with a preferential orientation in the axis c (002). The homogeneity of Cu layers is obtained for 10 and 13 nm thicknesses, and the optical properties are strongly affected by the existence of Cu. Moreover, increasing Cu thickness leads to (i) an improvement of structural and electrical (resistivity, mobility and carrier density) properties, (ii) a decrease in transmittance, (iii) a widening of the optical gap, and (iv) a variation of UV–violet emission intensity. These very interesting results are of great importance for understanding the behavior of Cu/AZO bilayers, which form a milestone for future potential applications in coatings and photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M. Okuya, N. Ito, K. Shiozaki, Thin Solid Films 515, 8656–8659 (2007). https://doi.org/10.1016/j.tsf.2007.03.148

    Article  CAS  Google Scholar 

  2. T. Minami, Semicond. Sci. Technol. 20, 35–44 (2005). https://doi.org/10.1088/0268-1242/20/4/004

    Article  CAS  Google Scholar 

  3. T. Söderström, F.-J. Haug, X. Niquillie, C. Ballif, Prog. Photovolt: Res. Appl. 17, 165–176 (2009). https://doi.org/10.1002/pip.869

    Article  CAS  Google Scholar 

  4. R.K. Chava, M. Kang, J. Alloys Compd. 692, 67–76 (2017). https://doi.org/10.1016/j.jallcom.2016.09.029

    Article  CAS  Google Scholar 

  5. J. Marks, J.G.C. Veinot, J. Cui, H. Yan, A. Wang, N.L. Edleman, J. Ni, Q. Huang, P. Lee, N.R. Armstrong, Synth. Met. 12, 29–35 (2002). https://doi.org/10.1016/S0379-6779(01)00593-8

    Article  Google Scholar 

  6. Y.S. Kim, W.J. Hwang, K.T. Eun, S.H. Choa, Appl. Surf. Sci. 257, 8134–8138 (2011). https://doi.org/10.1016/j.apsusc.2011.04.123

    Article  CAS  Google Scholar 

  7. V.S. Bhati, M. Hojamberdiev, M. Kumar, Energy Rep. 6, 46–62 (2020). https://doi.org/10.1016/j.egyr.2019.08.070

    Article  Google Scholar 

  8. Q. Xu, L. Cheng, L. Meng, Z. Wang, S. Bai, X. Tian, X. Jin, Y. Qin, ACS Appl. Mater. Interfaces 11, 26127–26133 (2019). https://doi.org/10.1021/acsami.9b09264

    Article  CAS  Google Scholar 

  9. S. Nagar, S. Chakrabarti, Optimisation of ZnO Thin Films, Implants, Properties, and Device Fabrication (Springer, Singapore, 2017)

    Book  Google Scholar 

  10. M. Mohamedi, F. Challali, T. Touam, D. Mendil, S. Ouhenia, A.H. Souici, D. Djouadi, A. Chelouche, J. Lumin. 244, 118739 (2022). https://doi.org/10.1016/j.jlumin.2022.118739

    Article  CAS  Google Scholar 

  11. C.Y. Tsay, H.C. Cheng, Y.T. Tung, W.H. Tuan, C.K. Lin, Thin Solid Films 517, 1032–1036 (2008). https://doi.org/10.1016/j.tsf.2008.06.030

    Article  CAS  Google Scholar 

  12. J. Yang, Y. Jiang, L. Li, M. Gao, Appl. Surf. Sci. 421, 446–452 (2017). https://doi.org/10.1016/j.apsusc.2016.10.079

    Article  CAS  Google Scholar 

  13. M. Wang, L. Jiang, Y. Wang, E.J. Kim, S.H. Hahn, J. Am. Ceram. Soc. 98, 3022–3028 (2015). https://doi.org/10.1111/jace.13742

    Article  CAS  Google Scholar 

  14. B. Soltabayev, M.A. Yıldırım, A. Ateş, S. Acar, Mater. Sci. Semicond. Process. 101, 28–36 (2019). https://doi.org/10.1016/j.mssp.2019.05.026

    Article  CAS  Google Scholar 

  15. S. Yu, W. Zhang, L. Li, H. Dong, D. Xu, Y. Jin, Appl. Surf. Sci. 298, 44–49 (2014). https://doi.org/10.1016/j.apsusc.2014.01.037

    Article  CAS  Google Scholar 

  16. M. Wu, S. Yu, G. Chen, L. He, L. Yang, W. Zhang, Appl. Surf. Sci. 324, 791–796 (2015). https://doi.org/10.1016/j.apsusc.2014.11.039

    Article  CAS  Google Scholar 

  17. Y. Li, R. Yao, H. Wang, X. Wu, J. Wu, X. Wu, W. Qin, ACS Appl. Mater. Interfaces 9, 11711–11720 (2017). https://doi.org/10.1021/acsami.7b02609

    Article  CAS  Google Scholar 

  18. J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Appl. Surf. Sci. 367, 52–58 (2016). https://doi.org/10.1016/j.apsusc.2016.01.160

    Article  CAS  Google Scholar 

  19. S. Wilken, V. Wilkens, D. Scheunemann, R.E. Nowak, K.V. Maydell, J. Parisi, H. Borchert, ACS Appl. Mater. Interfaces 7, 287–300 (2015). https://doi.org/10.1021/am5061917

    Article  CAS  Google Scholar 

  20. S. Fernandez, F.B. Naranjo, Sol. Energy Mater. Sol. Cells 94, 157–163 (2010). https://doi.org/10.1016/j.solmat.2009.08.012

    Article  CAS  Google Scholar 

  21. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoçd, Int. J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  22. H.J. Cho, K.W. Park, J.K. Ahn, N.J. Seong, S.G. Yoon, W.H. Park, S.M. Yoon, D.J. Park, J.Y. Lee, J. Electrochem. Soc. 156, J215 (2009). https://doi.org/10.1149/1.3147376

    Article  CAS  Google Scholar 

  23. Y. Li, M. Wu, Y. Sun, S. Yu, J. Mater. Sci. Mater. Electron. 30, 13271–13279 (2019). https://doi.org/10.1007/s10854-019-01690-6

    Article  CAS  Google Scholar 

  24. Y. Liu, S. Zhu, B. Song, Results Phys. 13, 102286 (2019). https://doi.org/10.1016/j.rinp.2019.102286

    Article  Google Scholar 

  25. D.S. Ghosh, T.L. Chen, N. Formica, J. Hwang, I. Bruder, V. Pruneri, Sol. Energy Mater. Sol. Cells 107, 338–343 (2012). https://doi.org/10.1016/j.solmat.2012.07.009

    Article  CAS  Google Scholar 

  26. H.J. Pereira, R.A. Hatton, Front. Mater. 6, 1–8 (2019). https://doi.org/10.3389/fmats.2019.00228

    Article  Google Scholar 

  27. A. Bouhadiche, S. Benghorieb, T. Touam, D. Mendil, A. Chelouche, J. Cryst. Growth 556, 125992 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125992

    Article  CAS  Google Scholar 

  28. D.R. Sahu, S.Y. Lin, J.L. Huang, Thin Solid Films 516, 4728–4732 (2008). https://doi.org/10.1016/j.tsf.2007.08.089

    Article  CAS  Google Scholar 

  29. X. Yan, S. Venkataraj, A.G. Aberle, Energy Procedia 33, 157–165 (2013). https://doi.org/10.1016/j.egypro.2013.05.053

    Article  CAS  Google Scholar 

  30. S. Cho, Trans. Electr. Electron. Mater. 10, 185–188 (2009). https://doi.org/10.4313/TEEM.2009.10.6.185

    Article  Google Scholar 

  31. N.P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, F.B. Prinz, Chem. Mater. 22, 4769–4775 (2010). https://doi.org/10.1021/cm101227h

    Article  CAS  Google Scholar 

  32. T. Wang, H.P. Ma, J.-G. Yang, J.-T. Zhu, H. Zhang, J. Feng, S.-J. Ding, H.-L. Lu, D.W. Zhang, J. Alloys Compd. 744, 381–385 (2018). https://doi.org/10.1016/j.jallcom.2018.02.115

    Article  CAS  Google Scholar 

  33. Y.P. Wang, J.G. Lu, X. Bie, Z.Z. Ye, X. Li, D. Song, X.Y. Zhao, W.Y. Ye, Appl. Surf. Sci. 257, 5966–5971 (2011). https://doi.org/10.1016/j.apsusc.2011.01.068

    Article  CAS  Google Scholar 

  34. W. Yang, H. Yang, J. Su, X. Zhang, Vacuum 205, 111419 (2022). https://doi.org/10.1016/j.vacuum.2022.111419

    Article  CAS  Google Scholar 

  35. D. Mendil, F. Challali, T. Touam, A. Chelouche, A.H. Souici, S. Ouhenia, D. Djouadi, J. Lumin. 215, 116631 (2019). https://doi.org/10.1016/j.jlumin.2019.116631

    Article  CAS  Google Scholar 

  36. J. Wang, D. Ni, T. Zhang, D. Wang, K. Liang, J. Mater. Sci. Mater. Electron. 26, 8035–8039 (2015). https://doi.org/10.1007/s10854-015-3460-y

    Article  CAS  Google Scholar 

  37. K. Necib, T. Touam, A. Chelouche, L. Ouarez, D. Djouadi, B. Boudine, J. Alloys Compd. 735, 2236–2246 (2018). https://doi.org/10.1016/j.jallcom.2017.11.361

    Article  CAS  Google Scholar 

  38. A. Hojabri, F. Hajakbari, N. Soltanpoor, M.S. Hedayati, J. Theor. Appl. Phys. 8, 132–139 (2014). https://doi.org/10.1007/s40094-014-0132-x

    Article  Google Scholar 

  39. M. Chen, Z.L. Pei, C. Sun, L.S. Wen, X. Wang, J. Cryst. Growth 220, 254–262 (2000). https://doi.org/10.1016/S0022-0248(00)00834-4

    Article  CAS  Google Scholar 

  40. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Pearson Education Ltd., Essex, 2014)

    Google Scholar 

  41. E.S. Tüzemen, S. Eker, H. Kavak, R. Esen, Appl. Surf. Sci. 255, 6195–6200 (2009). https://doi.org/10.1016/j.apsusc.2009.01.078

    Article  CAS  Google Scholar 

  42. J.H. Jou, M.Y. Han, D.J. Cheng, J. Appl. Phys. 71, 4333–4336 (1992). https://doi.org/10.1063/1.350815

    Article  CAS  Google Scholar 

  43. J.A. Thornton, D.W. Hoffman, Thin Solid Films 171, 5–31 (1989). https://doi.org/10.1016/0040-6090(89)90030-8

    Article  Google Scholar 

  44. J. Singh, S. Ranwa, J. Akhtar, M. Kumar, AIP Adv. 5, 067140 (2015). https://doi.org/10.1063/1.4922911

    Article  CAS  Google Scholar 

  45. T. Dimopoulos, G.Z. Radnoczi, Z.E. Horváth, H. Brückl, Thin Solid Films 520, 5222–5226 (2012). https://doi.org/10.1016/j.tsf.2012.03.103

    Article  CAS  Google Scholar 

  46. W. Zhang, J. Xiong, L. Liu, X. Zhang, H. Gu, Sol. Energy Mater. Sol. Cells 153, 52–60 (2016). https://doi.org/10.1016/j.solmat.2016.04.015

    Article  CAS  Google Scholar 

  47. D.R. Sahu, J.L. Huang, Appl. Surf. Sci. 253, 915–918 (2006). https://doi.org/10.1016/j.apsusc.2006.01.035

    Article  CAS  Google Scholar 

  48. D. Miao, S. Jiang, S. Shang, H. Zhao, Z. Chen, J. Mater. Sci. Mater. Electron. 25, 5248–5254 (2014). https://doi.org/10.1007/s10854-014-2297-0

    Article  CAS  Google Scholar 

  49. J. Tauc, Mater. Res. Bull. 33, 37–46 (1968). https://doi.org/10.1016/0025-5408(68)90023-8

    Article  Google Scholar 

  50. M. Wang, E.J. Kim, S. Kim, J.S. Chung, I. Yoo, E.W. Hahn, S.H. Shin, C. Park, Thin Solid Films 516, 1124–1129 (2008). https://doi.org/10.1016/j.tsf.2007.05.039

    Article  CAS  Google Scholar 

  51. T. Touam, M. Atoui, I. Hadjoub, A. Chelouche, B. Boudine, A. Fischer, A. Boudrioua, A. Doghmane, Eur. Phys. J. Appl. Phys. 67, 30302 (2014). https://doi.org/10.1051/epjap/2014140228

    Article  CAS  Google Scholar 

  52. R. Viswanatha, S. Chakraborty, S. Basu, D.D. Sarma, J. Phys. Chem. B 110, 22310–22312 (2006). https://doi.org/10.1021/jp065384f

    Article  CAS  Google Scholar 

  53. C.A. Parker, J.C. Roberts, S.M. Bedair, M.J. Reed, S.X. Liu, N.A. El-Masry, L.H. Robins, Appl. Phys. Lett. 75, 2566–2568 (1999). https://doi.org/10.1063/1.125079

    Article  CAS  Google Scholar 

  54. L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q.-K. Xue, X. Du, Phys. Rev. B 93, 235305 (2016). https://doi.org/10.1103/PhysRevB.93.235305

    Article  CAS  Google Scholar 

  55. M. Mahanti, D. Basak, J. Lumin. 145, 19–24 (2014). https://doi.org/10.1016/j.jlumin.2013.07.028

    Article  CAS  Google Scholar 

  56. L. Ouarez, A. Chelouche, T. Touam, R. Mahiou, D. Djouadi, A. Potdevin, J. Lumin. 203, 222–229 (2018). https://doi.org/10.1016/j.jlumin.2018.06.049

    Article  CAS  Google Scholar 

  57. S. Park, Y. Mun, S. An, W. Lee, C. Lee, J. Lumin. 147, 5–8 (2014). https://doi.org/10.1016/j.jlumin.2013.10.044

    Article  CAS  Google Scholar 

  58. Y. Xu, B. Yao, Y.F. Li, Z.H. Ding, J.C. Li, H.Z. Wang, Z.Z. Zhang, L.G. Zhang, H.F. Zhao, D.Z. Shen, J. Alloys Compd. 585, 479–484 (2014). https://doi.org/10.1016/j.jallcom.2013.09.199

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

NEAD, SC, FC, AC were involved in investigation; TT contributed to Writing—original draft.

Corresponding author

Correspondence to T. Touam.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doghmane, N.E.A., Chettibi, S., Challali, F. et al. Confocal magnetron sputtering deposition of Cu/AZO bilayer structures: effect of Cu thickness on microstructural and optoelectronic properties. J Mater Sci: Mater Electron 33, 26717–26727 (2022). https://doi.org/10.1007/s10854-022-09338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09338-8

Navigation